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Ribosomes form the core of the protein biosynthesis machinery and are essential to 

life. Ribosome biogenesis is a complex cellular process involving transcription of rRNA, 

pre-rRNA processing, rRNA modification and simultaneous assembly of ribosomal 

proteins. RNA nucleotide modification is observed in all domains of life. While there is 

enormous conservation of ribosome structure, very few post-transcriptional rRNA 

modifications have been conserved throughout evolution. A notable example of such rare 

conservation is the dimethylation of two adjacent adenosines in the 3’-terminal helix, a 

highly conserved region of the small subunit rRNA. Enzymes that carry out these 
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dimethylations are equally conserved and are collectively known as the KsgA/Dim1 family 

of methyltransferases. 

The first member of the family, KsgA, was identified in E. coli as the determinant 

for resistance to the aminoglycoside antibiotic Kasugamycin. Orthologs have since been 

described in organisms of wide spread evolutionary origins as well as in eukaryotic cellular 

organelles, thus underscoring the unprecedented conservation of this family of enzymes 

and the resultant rRNA modification. The higher evolutionary orthologs of KsgA have 

adopted secondary roles in ribosome biogenesis in addition to their dimethyltransferase 

role. The eukaryotic ortholog, Dim1, is essential for proper processing of the primary 

rRNA transcript. Recently, KsgA has been speculated to function as a late stage ribosome 

biogenesis factor and a ∆ksgA genotype in E. coli has been linked to cold sensitivity and 

altered ribosomal profiles. 

This report focuses on the biochemical characterization of KsgA and its interaction 

with the 30S subunit. We have established the salt conditions required for optimal KsgA 

methyltransferase activity while confirming that KsgA recognizes a translationally inactive 

conformation of 30S subunit in vitro. Our study of the functional conservation of 

KsgA/Dim1 enzymes in the bacterial system revealed that KsgA and the evolutionarily 

higher orthologs could recognize a common ribosomal substrate. This indicates that the 

recognition elements of both, the protein and the small subunit, have remained largely 

unchanged during the course of evolution. Finally, based on our site directed mutagenesis 

and biochemical studies, we report that KsgA binds to structural components of 16S rRNA 

other than the helix containing the target nucleosides. 
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CHAPTER 1: Introduction 
 
 

Ribosome biogenesis 
 

The ribosome is a universal complex enzyme essential to life. Ribosomes form 

the core of the protein biosynthesis machinery which manufactures proteins based on the 

genetically encoded messages. Since this discovery nearly five decades ago, the 

biogenetic, biophysical and functional aspects of the ribosome have become subjects of 

intensive research. For decades, microbial ribosomes have been exploited therapeutically 

as proven targets for anti-microbial agents1. The work reported in this dissertation 

focuses on a universally conserved ribosomal RNA modification and the equally 

conserved family of proteins responsible for the modification.  

Under favorable growth conditions, a single cell of Escherichia coli can contain 

up to 100,000 ribosome copies; accounting for nearly 40% of the dried cell mass2, 3. 

Ribosomes consist of two unequal subunits; a large subunit (50S/60S) and a small 

subunit (30S/40S) in prokaryotes/eukaryotes, respectively. Each subunit is composed of 

~65% ribosomal RNA (rRNA) and ~35% ribosomal proteins. Ribosome biogenesis, the 

process by which ribosomes are synthesized, is a fundamental cellular process involving 

transcription of rRNA, pre-rRNA processing, rRNA modification and simultaneous 

assembly of ribosomal proteins4. The process demands a high level of regulation, 

coordination and energy expenditure. It is estimated that a proliferating cell devotes more 
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than 50% of its cellular energy for the process of ribosomal synthesis, processing, and 

assembly2. 

Much of our understanding of the process of ribosome biogenesis in prokaryotes 

comes from years of work on E. coli5-8. The pre-16S rRNA undergoes multiple 

processing and maturation steps as it is transcribed, to give mature 16S rRNA9. Several 

non-ribosomal factors, including RNases are involved in this process. Based upon many 

observations, it is thought that 30S subunit assembly occurs co-transcriptionally or during 

16S rRNA maturation, and that the modification of nucleotides within 16S rRNA occurs 

concurrently with the process of 30S subunit assembly. However, the order of processing 

and subunit assembly events remains largely unknown. 

In vitro studies have contributed significantly to our understanding of ribosome 

biogenesis. A major milestone was achieved in 1968, when Traub and Nomura 

demonstrated that functional ribosomal subunits could be reconstituted in vitro using only 

the component rRNAs and ribosomal proteins purified from E. coli5. Subsequent to this 

discovery, functional 30S subunits were also reconstituted using individually purified 

30S subunit proteins10, either in natural or recombinant form, and in vitro transcribed 16S 

rRNA11, 12, which lacked nucleotide modifications. These reconstituted subunits have the 

same sedimentation behavior as natural subunits. They also function in tRNA binding 

and polyphenylalanine synthesis studies, although with lesser activity than the natural 

ribosomes11-13. Neverthless, in vitro assembly remains an important achievement since it 

enabled biochemical studies that could not have been performed otherwise. 
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Another major milestone that enhanced the biophysical study of ribosomes was 

the first high resolution crystal structure of ribosomal subunits, the small subunit from the 

eubacterium Thermus thermophilus14 and the large subunit from the archaeon Haloarcula 

marismortui15. These structures were followed by that of the large subunit from the 

mesophilic eubacterium Deinococcus radiodurans16 and that of the 70S ribosomes from 

T. thermophilus17 and E. coli18. Later, Selmer et al. solved the structure of T. 

thermophilus 70S ribosome complexed with mRNA and tRNA, showing that the 

ribosome is indeed a ribozyme19. These structures have contributed invaluably to our 

understanding of the structure and function of the ribosome. 

In vitro as well as in vivo experiments have demonstrated that 30S subunit 

assembly is highly cooperative involving sequential addition of proteins and 

conformational changes in the growing subunit9. In vitro assembly experiments have 

allowed construction of a bacterial 30S subunit assembly map (Figure 1), which shows 

that ribosomal proteins assemble cooperatively onto the pre-16S rRNA in a roughly 5’ to 

3’ order, indicating co-transcriptional assembly in vivo20. The 30S subunit can 

structurally be divided into three regions – body (5’ domain), platform (central domain) 

and head (3’ domain). The assembly map shows that the body is assembled first, 

followed by the platform, with the head forming last.  

The in vitro reconstitution of 30S subunit proceeds through two experimentally 

determined intermediates6 (Figure 2B). At low temperatures (0 ˚C to 15 ˚C), a particle is 

formed which sediments at 21S. This particle has been termed RI, for Reconstitution  
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Figure 1. Assembly of the 30S subunit. (A) Assembly map (B) Crystal structure of 30S 
subunit. The three domains of 30S are roughly delineated and labeled. This figure was 
rendered using Pymol from the coordinates generated by Wimberly et al. (PDB ID 
1J5E)14. 
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Figure 2. 30S assembly in E. coli. (A) In vivo assembly. The chaperon system brings 
about the conformational change from RI to RI*. (B) In vitro assembly. Heat can bring 
about the conformational change from RI to RI*. 
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Intermediate, and consists of 16S rRNA plus a subset of ribosomal proteins (S4-S9, S11-

S13, and S15-S20). Most of these proteins are components of the body and platform. 

Unimolecular conformational rearrangement of RI yields RI*, a more compact particle 

with sedimentation coefficient of 26S, yet identical to RI in composition. The RI to RI* 

transition is the rate limiting step in assembly and requires either heat (42 ˚C) or the 

presence of a DnaK chaperone system to overcome the activation energy barrier21 (Figure 

2A). Once RI* has been formed, the remaining ribosomal proteins readily assemble on, 

even at low temperatures. Intermediates analogous to RI have been seen in vivo in certain 

cold sensitive mutants22, indicating that the in vitro reconstitution truly resembles the 30S 

subunit assembly in vivo. 

Although prokaryotic and eukaryotic ribosomes share similar basic architecture, 

ribosome biogenesis in eukaryotes is much more complex than that in prokaryotes. More 

than 150 factors23, including snoRNPs, GTPases, helicase, nucleases, transport proteins, 

and chaperones are thought to be involved in eukaryotic ribosome biogenesis. Ribosome 

synthesis starts in the nucleolus, where most of the maturation also takes place. The next 

few steps take place in the nucleus, with the final steps being completed in the 

cytoplasm24, 25 (Figure 3). 35S rRNA undergoes processing and maturation to yield the 

component rRNAs of the eukaryotic ribosome. As the pre-35S rRNA is being transcribed 

in the nucleolus, several factors including U3 snoRNP, small subunit ribosomal proteins 

and non ribosomal factors associate with it to form a 90S particle26. These particles 

correspond to the terminal ‘knobs’ seen in Miller chromatin spreads, a technique that  
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Figure 3. Schematic representation of Eukaryotic ribosome assembly. The terminal 
‘knobs’ are shown as spheres on the transcribing rRNA.  
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allows observation of actively transcribing rDNA by electron microscopy27, 28. Next, the 

pre-rRNA undergoes cleavage at three sites to yield mostly complete pre-40S (small 

subunit) particle and a very immature pre-60S (large subunit) particle24. Both particles 

are then exported to the cytoplasm, where a few final modifications yield the mature 40S 

particle. The pre 60S maturation is much more complicated and requires several 

processing steps to yield mature 60S. The association of ribosomal proteins occurs 

throughout the process of maturation, but detailed assembly pathways are not known. 

Also, in vitro reconstitution of eukaryotic ribosomes solely from the component rRNAs 

and ribosomal proteins have not been achieved yet. 

Ribosomal assembly in the archaeal system is not very well understood. The 

ribosomal protein composition is not the same in all archaeal organisms and depends on 

the phylogeny of the species29. Archaeal cells lack a nuclear membrane; however, at least 

one archaeal genome has been reported to contain putative homologs to nuclear and 

nucleolar structural genes from eukaryotes30, 31. Therefore, the possibility of spatio-

temporal control of ribosome synthesis cannot be totally discarded. In vitro, assembly of 

functional arcahaeal ribosomes from component rRNAs and ribosomal proteins occurs 

spontaneously; however, conditions reflecting the organism’s natural environment are 

required32-34. For example, thermophilic ribosomes require high temperatures34 whereas 

halophilic ribosomes require high salt concentrations35 for in vitro assembly. 

Nucleotide Modification 

RNA nucleotide modification is observed in all domains of life. Although the 

function of most rRNA nucleotide modifications remains unknown, the general view 
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holds that they serve to fine tune the ribosomal structure and function. Nucleotide 

modification occurs simultaneous to pre-rRNA processing and subunit assembly events 

in ribosome biogenesis. There are three major types of modifications in rRNA – 

conversion of uridine to pseudouridine, 2'-O-ribose methylation, and base methylations36 

(Figure 4). 

Modifications in bacteria are mainly base methylations and are performed by 

specific enzymes, one enzyme catalyzing only one modification in most cases37. 

Contrastingly, modifications in eukaryotic ribosomes are mainly pseudouridinylations 

and 2'-O-ribose methylations with only a few base methylations38. Also, in eukaryotic 

cells, similar modifications are carried out by a common enzyme, guided by snoRNAs to 

the specific location39. The archaeal rRNA modification is less well characterized, and 

there is a great deal of variation from species to species. Modifications are mostly 2'-O-

ribose methyls with only a few pseudouridines40. With snoRNAs guiding the 

modifications, the archaeal modification system appears to be more similar to that in 

eukaryotes41-43. 

The basic architecture of the ribosome has remained largely conserved throughout 

evolution44. The modified nucleotides are clustered within the conserved, functionally 

important regions of the ribosome45. However, no single rRNA modification has been 

reported to be essential for ribosome function. Collective blockade of pseudouridylations 

and 2'-O-methylations showed severe growth defects in Saccharomyces cerevisiae46. 

Similarly, eubacterial ribosomes reconstituted using in vitro 

 



www.manaraa.com

 

 10 

A                                                                                 B 

 

 

 

                            

 

 
C                                                                                 D 

 

                                   

 

 

 

 
 

E                                                                                  F 

 

 

 

 

 

 
Figure 4. Nucleoside modifications. (A) Adenosine, (B) N6, N6-dimethyladenosine, 
(C) Cytidine, (D) 2’-O methylcytidine, (E) Uridine, (F) Pseudouridine 
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transcribed, unmodified rRNA show much less activity in peptide synthesis than 

ribosomes reconstituted from natural rRNA47-49. Thus, it seems that individual 

modifications are indeed involved in fine tuning of ribosome’s structure and function, 

offering a larger benefit, collectively.    

While there is enormous conservation of ribosome structure between the 

prokaryotic, archaeal and eukaryotic ribosomes, very few post-transcriptional rRNA 

modifications have been conserved throughout evolution. A notable example of such rare 

conservation is the dimethylation of two adjacent adenosines in the 3’-terminal helix of 

small subunit rRNA, A1518 and A1519 in helix 45 by E. coli numbering system (Figure 

5).  The only known exceptions are in Saccharomyces cerevisiae mitochondrial 12S 

rRNA, which has no methyl groups on the two adenosine bases50; Euglena gracilis 

chloroplast rRNA51 and the 16 S rRNA of the archaebacterium Sulfolobus solfataricus52, 

both of which have only one dimethylated adenosine base. The 3’-terminal helix, which 

is involved in linking the small subunit to the large subunit53 of the ribosome and in 

binding to mRNA54, is one of the most conserved regions of the small subunit55, 56. 

Enzymes that carry out the dimethylations in this highly conserved region are equally 

conserved and are collectively known as the KsgA/Dim1 family of methyltransferases, 

where KsgA is the bacterial ortholog and Dim1 is the eukaryotic ortholog. 
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Figure 5. Dimethyladenosines in the 16S rRNA of E. coli. (A) Secondary structure of the 
E. coli 16S rRNA. Helix 45, where the two dimethylated adenosines are located, is 
circled in red. (B) Helix 45. Stars indicate modified adenosines. 
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KsgA/Dim1 Family of Methyltransferases 

The presence and function of the KsgA/Dim1 family of enzymes have been 

maintained throughout all domains of life, including the eukaryotic cellular organelles. 

The enzyme was first described in E. coli, where it catalyzes the conversion of two 

adjacent adenosines A1518 and A1519, also conserved, in the 30S subunit rRNA to N6, 

N6-dimethyladenosines (Figure 6)57, 58. Orthologs have since been described in organisms 

of diverse origins including KsgA in the eubacteria Bacillus stearothermophilus59, Dim1 

in Saccharomyces cerevisiae60 and Kluyveromyces lactis61, and MjDim1 in the archaea 

Methanocaldococcus jannaschii62. Analogus methyltransferases, h-mtTFB and Pfc1, 

have been identified in the human mitochondria63 and in the chloroplasts of Arabidopsis 

thaliana64, respectively. Although KsgA/Dim1 from no other species has been tested, the 

wide spread evolutionary origins of the above members underscore the unprecedented 

conservation of this family of enzymes and the resultant rRNA modification. 

KsgA (Figure 8A) is dispensable in bacteria with only modest consequences and 

forms the dominant mode by which bacteria become resistant to the aminoglycoside 

antibiotic kasugamycin57, 65. A KsgA knockout mutant lacks the dimethyls on 

A1518/A1519 and shows slower growth rate in Escherichia coli and reduced virulence in 

the human pathogen, Yersina pseudotuberculosis66-68. Recently, KsgA has been 

speculated to function as a late stage ribosome biogenesis factor69.  

The higher evolutionary members of this family have adopted secondary roles in 

ribosome biogenesis in addition to their dimethyltransferase role. Eukaryotic Dim1  
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Figure 6.  Conversion of adenosine to N6, N6-dimethyladenosine catalyzed by the 
KsgA/Dim1 family of methyltransferases. Two molecules of SAM are consumed per 
adenosine. 
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(Figure 8B) is a member of the processome and is essential for proper processing of the 

primary rRNA transcript70. Knockout of Dim1 in yeast is lethal60; loss of Dim1 in S. 

cerevisiae leads to depletion of 18S rRNA and buildup of an aberrant 22S rRNA species 

as a result of misprocessing70. Pfc1, the chloroplast ortholog, has been found to be 

important for proper development of chloroplasts at low temperatures64. Depletion of 

Pfc1 results in accumulation of misprocessed rRNA, suggesting a role similar to Dim1. 

The human mitochondrial ortholog h-mtTFB was originally demonstrated to be a 

mitochondrial transcription factor71. h-mtTFB has also been linked to hereditary deafness 

associated with a polymorphic A1555G mutation in mitochondrial rRNA72. In some 

mitochondria, there are two separate mtTFB proteins, mtTFB1 and mtTFB2, which are 

proposed to have arisen from a gene duplication event73. As per the evidence, mtTFB1 is 

more active as a methyltransferase, while mtTFB2 is more active as a transcription 

factor73, 74. The fungi have only a single mtTFB, suggesting loss of one of the paralogs in 

this lineage. The S. cerevisiae ortholog, sc-mtTFB, serves as a transcription factor but has 

completely lost its methyltransferase activity50. sc-mtTFB lacks significant sequence 

homology to any of the KsgA/Dim1 enzymes and yeast mtTFBs are poorly conserved 

and difficult to identify via sequence homology75. 

Dim1 of S. cerevisiae and h-mtTFB have been shown to dimethylate A1518 and 

A1519 of E. coli 30S in vivo63, 76. However, similar experiments by Pulicherla et al. to 

test for complementarity of archaeal Dim1 and bacterial KsgA in S. cerevisiae revealed 

that neither the bacterial nor the archaeal ortholog could complement for the eukaryotic 

Dim177. This might be related to the secondary, non-methyltransferase function that 
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Dim1 is known to play in eukaryotic ribosome biogenesis.  In the cases of both Dim1 and 

h-mtTFB, the methylating activity is separate from the second function; methylation-

deficient mutations can be made, which leave the rRNA processing or transcription 

activity intact76, 78. Pulicherla et al. also confirmed that in S. cerevisiae, none of the 

methyl groups transferred by Dim1 are critical for growth under standard conditions and 

a variety of temperatures77.  

The Erm family of methyltransferases, which confers resistance to the macrolide-

lincosamide-streptogramin B (MLS-B) group of antibiotics, are important paralogs of the 

KsgA/Dim1family79. These enzymes share high sequence homology with the KsgA 

family80 and have most likely resulted from one or more KsgA gene duplication events81. 

The Erm enzymes transfer one or two methyl groups to a single adenosine of 23S rRNA, 

near the peptidyl transferase site of the 50S subunit79.  

The KsgA/Dim1 family belongs to a well-characterized group of S-adenosyl-L-

methionine (SAM) dependent methyltransferases which includes RNA 

methyltransferases, DNA methyltransferases, protein methyltransferases and small 

molecule methyltransferases. Many of these enzymes have been well characterized 

structurally and biochemically. Enzymes of this group contain a Rossman-like fold, 

which consists of a central β-sheet surrounded by a variable number of α-helices, with 

well-defined SAM and target nucleotide binding pockets82. Thus, the methyltransferase 

function of the KsgA/Dim1 enzymes had a clear structural basis, but the structural basis 

for other functions remained unclear for years. Recently O'Farrell et al. carried out 

extensive sequence alignments and structural comparisons of the KsgA, Dim1, sc-mtTFB 
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Figure 7. Sequence alignment of KsgA, Dim1, ErmC', h-mtTFB, and sc-mtTFB 
(GenBank accession nos. P06992, P41819, P13956, NP_057104, and P14908). Red 
letters designate residues that are absolutely conserved in KsgA enzymes, while green 
letters designate residues that are highly conserved. Figure adopted from elsewhere84.  
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Figure 8. Crystal structures of (A) KsgA (PDB ID: 1QYR)84(B) Dim1 (PDB ID: 1ZQ9; 
Dong, A.; Wu, H.; Zeng, H.; Loppnau, P.; Sundstorm, M.; Arrowsmith, C.; Edwards, A.; 
Bochkarev, A.; Plotnikov, A., unpublished data) (C) ErmC' (PDB ID: 1QAM)85 All 
figures were generated using program Pymol. 
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and ErmC' enzymes and identified regions that are likely related to functions other than 

the common methyltransferase function (Figures 7 and 8)83. They reported that core 

regions common to the entire class of enzymes are associated with ribosome binding and 

therefore the rRNA methylation activity, whereas regions conserved in the subgroups are 

related to the non-methyltransferase functions. 

KsgA 
The ksgA gene was first described by Dahlberg et al. in 1971 as a locus that 

affected methylation in the 16S rRNA and determined resistance to the aminoglycoside 

antibiotic kasugamycin (ksg)57. 16S rRNA from the resistant mutant lacked dimethylation 

of two adenosines, A1518 and A1519, on the 3’ terminal helix. Therefore, the ksgA locus 

was proposed to encode an rRNA methyltransferase. This was found to be true when an 

rRNA methylase activity, absent in the ksg resistant strains, was characterized in ksg 

sensitive strains. This methylase activity was also shown to alter the phenotype of ksg 

resistance by dimethylating in vitro the two adenosines in the 16S rRNA of resistant 30S 

subunits65. The methylase activity was later attributed to KsgA (Figure 8A), the product 

of ksgA gene. In the following decades KsgA has received intermittent scrutiny, 

uncovering facts about KsgA and its orthologs.  

Although KsgA is universally conserved, it is startling that KsgA knockout is 

tolerated in bacteria with only modest consequences. Igarishi et al. described a 

kasugamycin resistant strain which grew slower than the wild type strain on certain 

culture media66. Also, the ribosomes from the resistant strain showed slower polypeptide 

synthesis in the in vitro assays than wild-type ribosomes. However, in this case, the 

translational impairment was not directly a result of the undermethylation of 16S rRNA. 
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The loss of modification likely affected the subunit assembly since ribosomes from the 

resistant strain were found to contain lower amounts of ribosomal protein S1 than those 

from the wild-type strain. S1 is essential for normal translation in E. coli86; ribosomes 

lacking the S1 protein cannot translate mRNA containing leader sequences, but are able 

to translate leaderless mRNAs87. This probably was the reason for slower polypeptide 

synthesis.  

van Buul et al. described a ksgA mutant strain which displayed ribosomal 

ambiguity in in vitro translation assays67. Ribosomes purified from the mutant strain 

allowed leakiness of nonsense and frameshift mutations in in vitro translation assays. 

Although protein composition of the mutant 30S was not analyzed, given the proximity 

of the adenosines to the functional center of the ribosome, it seems likely that the 

presence or absence of the methyl groups could have a direct effect on translational 

fidelity. The loss of KsgA function has been shown to reduce virulence in at least one 

human pathogen, Yersina pseudotuberculosis68.  

Although the importance of the methyl groups for proper ribosome function was 

evident from the above works, the exact role and thus the reason for universal 

conservation of KsgA and the result modification remained largely elusive. Given the 

range of functions displayed by KsgA orthologs, it was speculated that KsgA may play a 

larger role in ribosome biogenesis, beyond methylation. This possibility was pointed at 

when Inouye et al. discovered a functional link between KsgA and Era88-90. They isolated 

a cold-sensitive Era mutation which resulted in defects in cell division and in rRNA 

processing. The cold-sensitive phenotype of this mutant was complemented by 
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overexpression of KsgA, hinting thereby that KsgA may have a role in ribosome 

assembly similar to that of Era, RbfA, RimM, RimN, and RsgA.  

Connolly et al. recently offered a mechanistic explanation for the extreme 

conservation of the KsgA/Dim1 family of enzymes69. They propose that KsgA functions 

as a late stage ribosome biogenesis factor and that the methylation triggers release of 

KsgA from the assembling subunit, allowing it to finally mature and enter the translation 

cycle with the speculation that it functions as a gatekeeper. Connolly et al. also reported 

that a ∆ksgA genotype in E. coli is linked to cold sensitivity and altered ribosomal 

profiles, and that a methyltransferase-inactive form of KsgA is profoundly deleterious to 

cell growth and ribosome biogenesis69. The binding site of KsgA on the 30S ribosomal 

subunit is thought to overlap with that of IF3 binding site and 50S subunit association 

sites91. Xu et al. observed that addition of IF3 lead to a loss of directed cleavage of 16S 

rRNA by KsgA in their hydroxyl radical probing experiments91. This again indicates that 

KsgA might function as a gatekeeper, occluding these translational components from 

binding until an ‘appropriate’ assembly of structurally and functionally competent 30S 

subunit has occurred91. 

KsgA transfers methyl groups from four molecules of SAM to two adenosines in 

the 16S rRNA (Figure 6). However, the exact mechanism of methyl group transfer 

remains to be elucidated. There is no data concerning the number of binding events 

required to transfer four methyl groups or the order in which the methyl groups are 

transferred by KsgA to the two adenosines. In case of ErmC', there is strong evidence that 

dimethylation of the target adenosine occurs in two separate events92. Here, the enzyme 
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dissociates after transferring one methyl group and transfers the other in a second binding 

event. It has been reported that, under stringent conditions (low SAM concentration and 

low temperature), KsgA preferentially dimethylates the 3' proximal adenosine, suggesting 

some preference for ordered methylation51. However, if either adenosine is mutated the 

other is still able to be methylated, indicating that any such preference is not obligatory93. 

Substrate requirements for KsgA 

So far, KsgA is the only rRNA post-transcriptional modification enzyme known 

to be conserved in all three domain of life as well as in eukaryotic cellular organelles59-61, 

63, 64. The KsgA/Dim1 family bears sequence and structural semblance to a large group of 

S-adenosyl-L-methionine (SAM) dependent methyltransferases. ErmC' (Figure 8C), the 

rRNA methyltransferase involved in macrolide resistance80 is an important paralog of 

KsgA. KsgA and ErmC' are closely related structurally and catalyze very similar 

reactions. However, substrate recognition by KsgA is subject to complex regulation that 

is absent from the Erm methyltransferases84.  

ErmC' can bind and methylate a 32 nucleotide RNA fragment containing the 

target adenosine94. KsgA has also been shown to bind a small RNA fragment that 

contains the target adenosines, but it is unable to methylate the fragment or even naked 

16S95. KsgA remains enzymatically inactive until a partially matured small subunit has 

assembled96. The reason behind this remains unclear. One possible explanation is that 

KsgA is regulated allosterically; free KsgA could exist in a conformation that is 

competent for rRNA binding but not methylation. This hypothesis is supported by the 

observations that free KsgA does not bind SAM appreciably58, and that in the crystal 
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structure of KsgA, the active site pocket is not large enough to accommodate two 

adenosine bases simultaneously84. Therefore, a second interaction, beyond the site of 

modification, between KsgA and its pre-30S substrate may be required for KsgA 

activation84.  

It is possible that in vivo KsgA binds to an early intermediate 16S rRNA, but only 

when the correct pre-30S particle is assembled, does the interaction trigger binding of 

SAM to KsgA and also positions the target rRNA in such a way that the two nucleotides 

flip into the active site successively. Dim1 and h-mtTFB have been shown to complement 

for KsgA function in bacteria60, 63. This indicates that the bacterial, eukaryotic, and 

organellar enzymes can recognize a common bacterial substrate, despite differences in 

the respective 30S maturation processes. We have extended the previous 

complementation studies to include an archaeal ortholog MjDim1 from the organism, M. 

jannaschii and have examined the activity of MjDim1 and Dim1 from S. cerevisiae 

(ScDim1) both in vivo and in vitro in bacterial systems (Chapter 3). 

The composition of the true in vivo substrate for KsgA remains to be identified, 

but the study by Thammana and Held showed that in vitro, the minimal substrate requires 

16S rRNA plus the ribosomal proteins S4, S6, S8, S11, S15, S16, S17, and S18, all part 

of the RI (21S) particle (Figure 9)96. However, the same study reported that subsequent 

addition of the proteins S3, S9, S10, S14, and S21 is refractory to KsgA activity, 

suggesting that dimethylation of A1518 and A1519 occurs during a specific point during 

ribosome assembly. According to Thammana and Held, fully formed 30S complexes are  
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Figure 9. 30S ribosomal proteins required for and refractory to KsgA activity, according 
to Thammana and Held96. In light gray ribbon is 16S rRNA except for A1518 and A1519 
of helix 45, which are yellow and blue, respectively, and in space-filling representation. 
In green ribbon are those proteins necessary for KsgA activity. In red ribbon are those 
proteins that are refractory to KsgA activity. The remaining ribosomal proteins are in 
dark gray ribbon. The three domains of 30S are roughly delineated and labeled. This 
figure was rendered using Pymol from the coordinates generated by Wimberly et al. 
(PDB ID 1J5E)14. 
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not competent methylation substrates for the same reason. Curiously, a reevaluation of 

the inhibitory proteins by Poldermans et al.58 concluded that only S21 is inhibitory to 

KsgA activity. They further concluded that the Thammana and Held96 observations were 

the results of S21 and/or IF3 (also inhibitory to KsgA) impurities in their ribosomal RNA 

stocks. Also, in vivo stalled RI (21S) intermediates apparently are not methylated at 

A1518 and A15197, which suggests that methylation occurs when RI* (26S) forms or 

later. 

Direct comparison between the results obtained by the two groups is problematic 

because the methylation reactions performed contained different concentrations of Mg2+ 

and NH4
+. This is an important consideration because the conformational state of the 30S 

subunit is sensitive to the concentrations of monovalent and divalent cations97, 98. We 

have resolved this issue by assaying KsgA under different concentrations of monovalent 

and divalent cations (Chapter 2). We also report that, in vitro, KsgA does not recognize 

the assembly intermediate RI (21S) as a substrate, meaning that methylation occurs after 

RI (21S) has been formed. 

Apart from regulation for substrate recognition, KsgA must also be subject to 

complex temporal regulation. Ten bases are methylated in E. coli 16S rRNA and out of 

them six, including A15181 and A1519, are clustered in the same immediate area. 

m2G1516 is located in the loop of helix 45, very close to A15181 and A1519; 

m4Cm1402, m5C1407 and m3U1498 are located at the base of helix 44. During the 

window of time between KsgA binding and release, at least two other methyltransferases 

are thought to bind their respective target sites, which must overlap with that of KsgA 
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binding site since the bases are clustered. Therefore, these processing events must require 

exquisite timing to ensure that the modifications are carried out correctly without the 

various enzymes interfering with one another. 

Substrate binding to KsgA 

In order to gain complete insight into the role of KsgA in ribosome biogenesis and 

how it interacts with other ribosome biogenesis factors or chaperons, it is extremely 

important to determine the binding site of KsgA on the 30S subunit. However, there 

seems to be a great deal of incongruity in the literature regarding this information. 

Initially, based on the inspection of crystal structure of KsgA, mutagenesis data of ErmC' 

and assumed correspondence with DNA methyltransferases, KsgA was thought to bind 

helix 45 along the cleft formed between its N- and C- terminal domains84. However, 

questions remained regarding this mode of binding since the KsgA crystal structure 

showed that the active site pocket was not large enough to accommodate two adenosine 

bases simultaneously, which would most likely be required for this mode of binding. 

Crystal structure of KsgA in complex with 30S subunit, which would possibly answer 

these questions, has remained unachievable for years. 

Xu et al. proposed a model of KsgA-16S rRNA complex based on hydroxyl 

radical probing and footprinting data 91. Their model positions KsgA such that its N-

terminal interacts with the 790 loop of 16S rRNA and almost the entire protein interacts 

with the top portion of helix 44 in a linear fashion. This arrangement puts the target 

adenosines of helix 45 within close proximity to the active site of KsgA (motif VIII)84, 

but KsgA never binds helix 45.  
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On the other hand, Tu et al. recently reported the crystal structure of Aquifex 

aeolicus KsgA bound to double stranded RNA via the cleft between its N- and C-terminal 

domains99. The RNA used in their study represents the helix 45 of E. coli 16S rRNA. 

Helix 45, according to the structure of E. coli 30S subunit18, forms a hairpin structure 

capped by a tetraloop that contains the target adenosines methylated by KsgA. However, 

the KsgA-RNA crystal structure reported by this group shows a duplex formed by the 

association of two RNA molecules instead of a hairpin formed by a single RNA 

molecule. This unnatural form of RNA leaves room for skepticism on whether KsgA 

truly binds helix 45 in vivo.  Moreover, the mode by which KsgA interacts with 16S 

rRNA is also different as per the above two reports. The different binding modes require 

dramatically different mechanistic details of KsgA. We have examined the key 16S 

rRNA sites implicated in binding to KsgA using site directed mutagenesis and in vitro 

methods (Chapter 4).  

Objectives 
 

KsgA and its orthologs represent a universally conserved family of RNA 

methyltransferases and have been shown to play an integral role in the biogenesis of 

functional ribosomes. The crystal structure of E. coli KsgA84 had been solved in our 

laboratory at the onset of this project. Though the crystal structure greatly enhanced our 

understanding of the enzyme, several questions remained that demanded biochemical 

characterization of the protein as it associates with its substrate. The studies presented 

here were undertaken in order to better understand the biochemical and structural 

requirements for the optimal functioning of KsgA and to lay a foundation for future 
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investigations. In our first study, we established the salt conditions required for optimal 

KsgA methyltransferase activity while confirming that KsgA recognizes a translationally 

inactive form of 30S subunit in vitro. This information has enabled efficient in vitro 

assays for further characterization of KsgA/Dim1 enzymes.  

 Our study of the functional conservation of KsgA/Dim1 enzymes in the bacterial 

system revealed that KsgA and the evolutionarily higher orthologs could recognize a 

common ribosomal substrate. Since then, a similar complementation experiment in S. 

cerevisiae in our lab has shown that none of the orthologs could complement the 

eukaryotic Dim1, probably due to the non-conserved secondary, non-methyltransferase 

function77. 

 Finally, to characterize the interaction of KsgA with the 30S subunit, we carried 

out site-directed mutagenesis of 16S rRNA followed by biochemical analysis of purified 

mutant 30S subunits with KsgA. Our results support the KsgA-16S rRNA model recently 

proposed by Xu et al.91  
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CHAPTER 2: Characterization of Substrate 

 
 
 

The KsgA/Dim1 family bears sequence and structural resemblance to a large 

group of S-adenosyl-L-methionine (SAM) dependent methyltransferases, one of which is 

ErmC', the rRNA methyltransferase involved in macrolide resistance80. KsgA and ErmC' 

are closely related structurally and both catalyze the transfer of two methyl groups from 

SAM to the target adenosines on rRNA. However, substrate recognition by KsgA is 

subject to complex regulation that is absent from the Erm methyltransferases84. ErmC' 

can bind and methylate a 32 nucleotide RNA fragment containing the target adenosine94. 

KsgA has also been shown to bind a small RNA fragment that contains the target 

adenosines, but it is unable to methylate that fragment or even naked 16S95. KsgA 

remains enzymatically inactive until a partially matured small subunit has assembled96. 

The reason behind this remains unclear.  

From the crystal structure of KsgA, it is clear that the active site pocket of KsgA 

is not large enough to accommodate two adenosine bases simultaneously84. Also, SAM 

binds KsgA very weakly until the enzyme interacts with fully or partially formed 30S 

subunits58. Therefore, a second interaction, beyond the site of modification, between 

KsgA and its pre-30S substrate may be required for KsgA activation84. It is possible that 

in vivo KsgA binds to an early intermediate 16S rRNA but, only when the correct pre-

30S particle is assembled, does the interaction trigger binding of SAM to KsgA and also 
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positions the target rRNA in such a way that the two nucleotides flip into the active site 

successively. 

The composition of the true in vivo substrate for KsgA remains to be identified, 

but the study by Thammana and Held showed that in vitro, the minimal substrate requires 

16S rRNA plus the ribosomal proteins S4, S6, S8, S11, S15, S16, S17, and S1896. 

However, the same study reported that subsequent addition of the proteins S3, S9, S10, 

S14, and S21 is refractory to KsgA activity, suggesting that dimethylation of A1518 and 

A1519 occurs during a specific point during ribosome assembly. Curiously, a 

reevaluation of the inhibitory proteins by Poldermans et al.58 concluded that only S21 is 

inhibitory to KsgA activity. They further concluded that the Thammana and Held 

observations96 were the results of S21 and/or IF3 (also inhibitory to KsgA) impurities in 

their ribosomal RNA stocks. 

Direct comparison between the results obtained by the two groups is problematic 

because the methylation reactions performed contained different concentrations of Mg2+ 

and NH4
+. This is an important consideration because the conformational state of the 30S 

subunit is sensitive to the concentrations of monovalent and divalent cations97, 98. 

Thammana and Held used high concentrations of NH4
+ and high Mg2+, which stabilize 

the conformation of 30S into an ‘active’ state. The active state is defined as the ability of 

30S subunits to support translation and integral translational functions such as binding 

tRNA and mRNA. The buffer used by Poldermans et al.58, which contained low NH4
+ 

and intermediate Mg2+, was optimized to enhance methylation of 30S particles by KsgA. 

Traditionally, intermediate NH4
+ and low Mg2+concentrations have been used to stabilize 
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30S in a translationally ‘inactive’ state. The buffer used by Poldermans et al. should still 

be able to trap the 30S in the inactive state. Despite the different reaction conditions, both 

groups observed that S21 is inhibitory to KsgA activity. It is possible that only S21 is 

truly inhibitory but the proteins S3, S9, S10 and S14 also become inhibitory at the 

elevated monovalent and divalent cation concentrations used by Thammana and Held. 

This chapter directly addresses KsgA activity as it relates to 30S conformation. We also 

report that, in vitro, KsgA does not recognize the assembly intermediate 21S as a 

substrate, meaning that methylation occurs after 21S has been formed. 

Recombinant KsgA is functional 

To confirm that the recombinant KsgA was active and that the 30S subunits 

isolated from a kasugamycin resistant E. coli strain were unmodified at positions A1518 

and A1519 of 16S rRNA, we performed methylation activity assays using our 

biochemical stocks and a published protocol (Figure 10)58. Recombinant KsgA is able to 

efficiently methylate 30S subunits isolated from strains of E. coli resistant to 

kasugamycin, but not wild-type 30S subunits, indicating that the methylation function is 

specific for A1518 and A1519. Had non-specific methylation taken place then both 30S 

types would have been modified by KsgA. 

KsgA recognizes 30S in an ‘inactive’ state 

Standard protocols to isolate 30S subunits from sucrose gradients trap them in an 

‘inactive’ state that require heat activation at 42 °C for 10min in the presence of 100mM 

NH4
+ and 20mM Mg2+ prior to use in standard translation assays97. 30S subunits in very  
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Figure 10. Methylation of 30S by recombinant KsgA. All reactions were performed for 
30 min at 37 °C in Buffer I and contained 3H-SAM. 1, KsgA + 30S subunits from 
Kasugamycin-resistant E. coli strain ksgR11. 2, KsgA + 30S from wild-type E. coli. 3, 
KsgA without any 30S subunits. 4, 30S from ksgR11 without KsgA. 
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Figure 11. The effect of 30S conformation on KsgA activity. Standard activity assay in 
buffers K, A and I. Buffers K and I stabilize 30S subunits into a translationally inactive 
state while Buffer A stabilizes 30S subunits into the translationally active state. Error bars 
indicate plus and minus one standard deviation unit. 
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low NH4
+ or low Mg2+ will never (or very slowly) convert to the active conformation as a 

result of the annealing step98. 

We directly compared conditions used by Thammana and Held (high NH4
+ 

(200mM) and high Mg2+ (20mM) buffer), which traps 30S in the translationally active 

state with those used by Poldermans et al. (low NH4
+ (40mM) and intermediate Mg2+ (4 

mM) buffer), which trap 30S in a translationally inactive state, along with conditions 

traditionally used to stabilize 30S into the translationally inactive state (intermediate 

NH4
+ (100mM) and low Mg2+ (0.5 mM) buffer; Figure 11). Most striking is the fact that 

under cation concentrations that stabilize 30S subunits in the translationally active state 

(high NH4
+ and high Mg2+) very little methylation occurs. In contrast, the two reaction 

conditions expected to hold 30S in an inactive state promote efficient methylation. Buffer 

K, which contains 4mM Mg2+, is the most active with regard to KsgA activity. 

Poldermans et al. previously reported that KsgA activity is maximal at 4mM Mg2+ when 

NH4
+ concentration remained low58. The intermediate activity observed in Buffer I is 

probably the result of a Mg2+ concentration of only 0.5mM, which is below the optimal 

concentration for KsgA activity. It is important to stress that a concentration of only 

3mM Mg2+ is too low for 30S subunits to adopt the active conformation98. We do not 

know if KsgA has a direct Mg2+ requirement or if the suitability of 30S to serve as a 

substrate is altered when the Mg2+ concentration is changed from 0.5 to 4mM. 

Nevertheless, it is clear that KsgA is unable to utilize 30S subunits in the translationally 

active state as a substrate. 
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The above conclusions are supported by numerous structural data of 30S in the 

active and inactive conformations. In the crystal structure of the Thermus thermophilus 

30S subunit, which is a snapshot of 30S in the active conformation, A1518 and A1519 

are well buried into the groove of helix 44 and therefore sequestered from KsgA14. 

However, conversion to the inactive state exposes the same two nucleotides to the 

solvent100 through domain movements that involve the platform region of 30S101. The 

structure of the GGAA tetraloop in helix 45 in context of the crystal structure and free in 

solution are also different14, 102, which might also impact the reactivity of A1518 and 

A1519. 

Does KsgA recognize an assembly intermediate of 30S? 

Closer scrutiny of the proteins required for KsgA activity and those inhibitory to 

KsgA function argues that dimethylation of A1518 and A1519 occurs at an intermediate 

point during the assembly pathway of 30S. In vitro assembly of 30S is a highly 

cooperative process6, 103, 104. Early binding proteins, S4–S9, S11–S13, and S15–S20, 

assemble with 16S rRNA to form a relatively loose ribonucleoprotein particle with a 

sedimentation coefficient of the 21S particle. The remaining ribosomal proteins, S2, S3, 

S10, S14, S10, and S21, are unable to bind to 21S. However, heating 21S at 42 °C in 

vitro results in a change in 16S rRNA conformation that causes 21S to collapse into a 

denser particle of the same composition, but with a sedimentation value of 26S105. At this 

point the remaining ribosomal proteins readily bind to 26S, yielding active 30S. 

Thammana and Held reported that purified 16S rRNA plus a set of eight proteins (S4, S6, 
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S8, S11, S15-S18), all part of the 21S/26S particle, could serve as a minimal substrate for 

KsgA in vivo96.   

Although 21S and 26S particles were identified in vitro, counterparts are present 

in vivo 22, 106, 107. Based on the fact that the pre-30S assembly intermediates 21S and 26S 

both contain the eight proteins important to KsgA activity, one would predict that in vivo 

either the 21S or the 26S (or both) conformation is a substrate for KsgA. However, 

analysis of nuclease digests of in vivo pre-30S particles, which are analogous to the in 

vitro 21S particle, indicate that the dimethyladenosines are not yet present, which led the 

authors of that work to conclude that methylation at A1518 and A1519 had not yet 

occurred7. If KsgA recognizes a specific assembly state of 30S in vivo, then that 

assemblage appears to come after 21S has formed.  

The lack of methylation in the in vivo 21S particle presents a conundrum. The 

21S intermediate contains all eight ribosomal proteins shown to be essential for efficient 

methylation in vitro. On this basis we would expect 21S to be a viable substrate in vitro.  

Therefore, we asked if KsgA could methylate 21S particles generated by in vitro 

reconstitution. At 40 °C, reconstitution of 16S rRNA and total proteins of 30S (TP30) 

proceeds to completion i.e. 30S, while at and below 15 °C, it is stalled at 21S6, 103. 16S 

rRNA unmodified at positions A1518 and A1519 was reconstituted with TP30 at 40 °C 

and 15 °C. These reconstitution reactions were then assayed for KsgA activity at the 

respective temperatures. Purified natural 30S unmodified at A1518 and A1519 was tested 

as control.  
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Figure 12. (A) Magnesium dependence assay at 40 °C to determine the optimal Mg+2 
concentration for KsgA activity under the reconstitution salt conditions (B) In vitro time 
course assay at 15 °C to assess the methylation of 21S particles by KsgA. The Mg+2 
concentration in these reaction was 10mM, as found optimal in (A).  In both, (A) and (B), 
purified natural 30S subunits were used as a control. Diamonds indicate the control 
assays containing natural 30S subunits, whereas squares indicate assays containing the 
reconstitution product. 
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Figure 13. (A), (B) and (C) represent the sucrose gradient profiles of 16S rRNA + KsgA, 
30S + KsgA, and 30S, respectively. (D) SDS PAGE analysis of the peak collected from 
(A), (B) and (C), where 1- Protein Standards, 2- KsgA (control), 3- 16S rRNA + KsgA, 
4- 30S + KsgA and 5- 30S. 
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We found that natural 30S subunits are substrates to KsgA at both temperatures, 

however, only those reconstitution reactions that were incubated at 40 °C show 

methylation (Figure 12). Therefore, it appears that KsgA requires something more folded 

than 21S, which is known to be a loose assemblage relative to more mature particles like 

26S and 30S. Hence, our in vitro analysis is consistent with the observation that KsgA 

doesn’t act before the formation of in vivo 21S intermediates. The identification of the 

core eight ribosomal proteins was made by single and bulk omission reconstitutions using 

16S rRNA and different set of ribosomal proteins.  All of these reconstitutions were done 

at 42 °C, which means that a 21S-like particle was never formed. Therefore, the core 

eight proteins are required but not sufficient for KsgA function.  High temperature 

annealing is also required. 

Ribosome biogenesis occurs co-transcriptionally, which means that there is never 

free 16S rRNA available for ribosome assembly. Nevertheless, it is of interest to 

understand just how immature assembly can support KsgA binding, though not 

necessarily catalytic function. Therefore, we incubated 16S rRNA, which is known not to 

be a substrate, with KsgA in 1:5 ratio at 37 °C for 20 min before running it on a 10-30% 

sucrose density gradient. As control, 30S+KsgA and 30S alone were also treated 

similarly. Fractions containing 16S rRNA in each experiment were collected and 

concentrated. The presence of KsgA was assayed by SDS PAGE analysis. The KsgA/16S 

rRNA complex was clearly strong enough to survive a sucrose gradient. Therefore, it 

appears binding isn’t the only critical factor for function. Obviously, overall 30S and 

partial 30S subunit assembly is essential. 
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Figure 14. Crystal structure of the 30S subunit. In light gray ribbon is 16S rRNA except 
for the pair of apical adenosines of helix 45, which are yellow and blue, respectively, and 
are in space-filling representation. In green ribbon are those proteins necessary for KsgA 
activity. In red ribbon are those proteins that are refractory to KsgA activity. The 
remaining ribosomal proteins are in dark gray ribbon. The three domains of 30S are 
roughly delineated and labeled. (A) The subunit interface view of 30S. (B) The solvent 
exposed view of 30S. These figures were rendered using Pymol from the coordinates 
generated by Wimberly et al. (PDB ID 1J5E)14. 
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Our results indicate that KsgA does bind naked 16S rRNA (Figure 13) and can 

thus bind very immature particles. KsgA also binds 30S subunit in the inactive state108. 

Therefore, KsgA is likely to be able to bind the intermediate 21S particle, which then 

means that KsgA does not recognize 21S as a substrate for methylation, in vitro as well. 

Interaction of KsgA with ribosomal proteins is indirect 

            Inspection of where on 30S the proteins that activate KsgA function and the 

proteins that inhibit KsgA bind reveals that they are principally split between different 

domains of the 30S subunit14. The activating proteins are located within the platform and 

body while the inhibitory proteins reside within the head, with the exception of the 

platform-bound S21 (Figure 14). Importantly, none of the proteins from either set are 

spatially close to helix 45, which means that none are close to where KsgA must bind. 

Therefore, it is reasonable to imagine that KsgA is activated or inhibited indirectly, 

probably through formation of alternate 30S conformers. With regard to the activating 

proteins, single omission experiments report that some KsgA activity remains when all 

but S8 are individually omitted 96. This implies that none of the proteins directly activate 

KsgA, otherwise their omission would abolish all activity. On the other hand, the 

indispensable protein S8 is so far from helix 45 that it is inconceivable that it could 

directly interact with KsgA to activate its enzymatic function. 

Conclusions 

            Based on the existing literature and the data reported here, we conclude that the 

discrepancies between Thammana and Held96 and Poldermans et al.58 observations can be 

explained by the occurrence of a conformational change that occurs as late binding 
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proteins assemble onto the nascent 30S under conditions of high Mg2+ and NH4
+. Before 

the head proteins bind, pre-30S is unable to adopt the ‘active’ conformation rejected by 

KsgA under all buffer conditions. But as the head proteins bind, a conformational shift 

occurs under the buffer conditions used by Thammana and Held that leads to a pre-30S 

and 30S that cannot be methylated by KsgA. However, this conformational shift does not 

occur under the buffer conditions that stabilize 30S into the translationally inactive state 

(intermediate NH4
+ and low Mg2+), and KsgA can methylate such 30S. 

            Also, our data indicates that although KsgA binds naked 16S rRNA in vitro, it 

does not recognize as substrate the 21S particle that contains all the eight proteins 

essential for KsgA activity. Also, the dimethyladenosines are not present in the in vivo 

pre-30S particles analogous to the in vitro 21S particles7. Therefore, if KsgA recognizes a 

specific assembly state of 30S, it comes after 21S has formed. This leaves a very narrow 

window of opportunity for KsgA to methylate, since once 26S forms, the inhibitory 

ribosomal proteins readily assemble on96. This is true unless in vivo 30S passes through a 

conformation analogous to the in vitro inactive state discussed above, something that has 

not been observed in vivo but cannot be discounted as a possibility. At the very least it 

appears that the enzymatic action of KsgA is tightly controlled during ribosome 

biogenesis, which may have importance to the overall biological role of KsgA in E. coli 

and to the corresponding enzymes in other organisms. Deciphering the events of KsgA 

involvement in ribosome biogenesis will teach us more about in vivo ribosome assembly, 

because the two processes are linked. Furthermore, the strong conservation between the 

KsgA/Dim1 proteins in bacteria, archaea, and eukaryotes suggests that there are common 
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assembly milestones for all ribosomes. Identification of those putative common 

milestones is critical to our understanding of ribosome biogenesis in all domains of life. 

Experimental 

Preparation of KsgA 
 

Recombinant KsgA was obtained as previously described109. Briefly, the ksgA 

gene was amplified from E. coli genomic DNA using PCR (forward primer: 5' - 

ATCGCCCATATGATGAATAATCGAGTCCACCAGG; reverse primer: 5' 

ATTATGCTCGAGTTAACTCTCCTGCAAAGGCG) and cloned into a pET15b 

expression vector to include an N-terminal polyhistidine tag (pJPR1). BL21 E. coli cells 

transformed with pJPR1 were grown to an OD600 of 0.6 in the presence of ampicillin 

and induced with 1 mM IPTG (Sigma-Aldrich). After 4 hours at 37 °C, cells were 

harvested by centrifugation. Pellets were resuspended in lysis buffer (50 mM NaPO4, 300 

mM NaCl, 10 mM imidazole, pH 8.0), broken with two passages through an Emulsiflex 

cell breaker (Avestin), and centrifuged to remove cell debris. Cleared lysate was loaded 

onto a HiTrap Chelating column (Amersham) equilibrated with 0.1M NiSO4, washed 

twice with increasing amounts of imidazole (wash buffer 1: 50 mM NaPO4, 300 mM 

NaCl, 20 mM imidazole, pH 8.0; wash buffer 2: 50 mM NaPO4, 300 mM NaCl, 50 mM 

imidazole, pH 8.0), and the protein eluted with elution buffer (50 mM NaPO4, 300 mM 

NaCl, 250 mM imidazole, pH 8.0). Protein concentrations were estimated using the 

Bradford method. Purified protein was dialyzed into buffer containing 50mM Tris, pH 

7.4, 400mM NH4Cl, and 6mM  β-mercaptoethanol and stored in 10% glycerol at -80 °C. 
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Preparation of submethylated 30S ribosomal subunits 

To obtain 30S subunits unmethylated at A1518 and A1519 a standard procedure 

of selecting for strains of E. coli resistant (>600 µg/ml) to the antibiotic kasugamycin was 

followed110. Individual ribosomal subunits from one such strain (ksgR11) were obtained 

via ultracentrifugation across a sucrose gradient using standard techniques111. As a 

control, 30S particles fully methylated at A1518 and A1519 were obtained from wild-

type E. coli using the same isolation protocol. Aliquots of pure 30S subunits (wild-type 

and submethylated) were dialyzed into buffer A, I, or K and stored at -80 °C. Buffers: (A) 

20mM Tris–HCl, pH 7.4, 200mM NH4Cl, 20mM MgCl2, 20mM DTT; (I) 10mM Tris–

HCl, pH 7.4, 100 mM NH4Cl, 0.5mM MgCl2, 1mM 2-mercaptoethanol; (K) 40mM Tris–

HCl, pH 7.4, 40mM NH4Cl, 4mM MgOAc, 6mM β-mercaptoethanol. 

In vitro activity assay of KsgA 

The assay performed here is a slight variation of the one developed by 

Poldermans et al.58. All reactions were done in 50 µl volumes containing buffer A, I, or 

K, 0.02mM 3H-methyl-SAM (780 cpm/pmol), 7 pmol of 30S, and 7 ng of KsgA. 

Reactions proceeded for 30min at 37 °C, then the contents were deposited onto DE81 

filter paper (Whatman), washed twice with cold 5% trichloroacetic acid, and washed with 

cold ethanol. Air-dried filters were placed into scintillation fluid and counted. 

In vitro activity assay of reconstituted 30S and 21S particles 

16S rRNA was prepared as previously described by Moazed et al.112 and TP30 

was prepared as described by Nierhaus113. Buffers used for reconstitution were Rec A 

(20mM K+-HEPES (pH 7.5), 0 to 20 mM MgCl2, 330 mM KCl and 6mM BME) and Rec 
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A-. Rec A- is RecA buffer minus KCl. Reconstitution was done using 1:1.5 molar ratio of 

16S rRNA to TP30. A standard activity assay reaction contained 20 pmol 16S rRNA, 30 

pmol TP30, 20 pmol KsgA and 0.02 mM 3H-methyl-SAM (780 cpm/pmol). For the 

control reactions, 16S rRNA and TP30 were replaced by 20 pmol purified natural 30S. 

Since TP30 is stored in a buffer containing 1M KCl, the KCl concentration of the 

reaction mixture was adjusted to 330 mM using RecA and RecA- buffers. 

Mg+2 dependence assay was performed at 40 °C to determine the optimal Mg+2 

concentration for KsgA activity under the reconstitution salt conditions. For this assay, 

16S rRNA and TP30 were mixed in RecA buffer (concentration of KCl was adjusted with 

RecA- buffer) containing 4, 6, 8, 10, 12, 15 or 20mM MgCl2, and incubated at 42 °C for 

15 min before shifting the reactions to 40 °C. As a control, the same procedure was 

followed for natural 30S. After 10 min incubation at 40 °C, KsgA and SAM were added, 

and the reactions were allowed to proceed for 60 min. At the end of 60 min, the reactions 

were quenched, deposited on filter paper, washed, dried and counted as described above.  

KsgA showed maximum activity at 10 mM MgCl2. To test 21S as a substrate for 

KsgA, a time course activity assay was performed at 15 °C, at which temperature the 

reconstitution is stalled at 21S. All the reaction buffers and components were maintained 

on ice. Assay procedure was similar to that described above, except that for this assay 

16S rRNA and TP30 were mixed in RecA buffer (KCl concentration adjusted with RecA-

) containing 10mM MgCl2, and incubated at 15 °C for 15 min before adding KsgA and 

SAM. As a control, the same experiment was performed on natural 30S. 
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CHAPTER 3: Functional Conservation 
 

 
 

The presence and function of the KsgA/Dim1 family of enzymes have been 

maintained throughout all domains of life, including the eukaryotic cellular organelles58-

61, 63, 64. Exceptions are rare50-52. However, KsgA is dispensable in bacteria with only 

modest consequences and forms the dominant mode by which bacteria become resistant 

to the aminoglycoside antibiotic kasugamycin57, 65. A KsgA knockout mutant shows 

slower growth rate in Escherichia coli and reduced virulence in the human pathogen, 

Yersina pseudotuberculosis66-68.  

The higher evolutionary members of this family have adopted secondary roles in 

ribosome biogenesis in addition to their dimethyltransferase role. Eukaryotic Dim1 is a 

member of the processome and is essential for proper processing of the primary rRNA 

transcript70. The human mitochondrial ortholog h-mtTFB, which is responsible for 

transferring methyl groups to the mitochondrial 12S rRNA, was originally demonstrated 

to be mitochondrial transcription factor63, 71. h-mtTFB has also been linked to hereditary 

deafness associated with a polymorphic A1555G mutation in mitochondrial rRNA72. In 

the cases of both Dim1 and h-mtTFB, the methylating activity is separate from the 

second function; methylation-deficient mutations can be made, which leave the rRNA 

processing or transcription activity intact76, 78. Pulicherla et al. recently confirmed that in 

Saccharomyces cerevisiae, none of the methyl groups transferred by Dim1 are critical for 
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growth under standard conditions and a variety of temperatures77. The key question that 

thus lingers is that why is the dimethyltransferase function still present and conserved 

universally. 

KsgA is able to methylate fully formed 30S subunits, although these subunits 

must be in a translationally inactive conformation to support methylation108. However, 

the true in vivo substrate for KsgA is unknown. A minimal in vitro substrate has been 

found to consist of 16S rRNA plus a subset of ribosomal proteins96.This suggests that 

KsgA methylates a discrete intermediate in the 30S assembly pathway. Dim1 and h-

mtTFB have been shown to complement for KsgA function in bacteria60, 63. This 

indicates that the bacterial, eukaryotic, and organellar enzymes can recognize a common 

bacterial substrate, despite differences in the respective 30S maturation processes.  

We have extended the previous complementation studies to include an archaeal 

ortholog MjDim1 from the organism, M. jannaschii. We have examined the activity of 

MjDim1 and Dim1 from S. cerevisiae (ScDim1) both in vivo and in vitro in bacterial 

systems. Our results indicate that the core methyltransferase activity of this family of 

enzymes, including recognition of a complex substrate, has changed little since the last 

ancestor. It also suggests that the basic structural components of the small ribosomal 

subunit, required for recognition by the enzymes have remained conserved. Although 

dispensable, the methyltransferase activity of the KsgA/Dim1 family of enzymes must 

have a role important enough to justify its preservation throughout the course of 

evolution. 
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Figure 15. Structure-based sequence alignment of KsgA (P06992), putative Dim from 
Homo sapiens (HsDim1, Q9UNQ2), ScDim1 (P41819), and MjDim1 (NP_248023). 
The alignment was generated using the TCoffee Web server114. Identical residues are 
denoted with a star, and strongly conserved residues with a colon; weakly conserved 
residues are marked with a period. Double-headed arrows indicate motifs common to 
SAM-dependent methyltransferases. Structures used for alignment were those of KsgA84 
(PDB ID 1QYR) and HsDim1115 (PDB ID 1ZQ9). 
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In vivo analysis 
 

ScDim1 has been shown to complement for KsgA function in ksgA– E. coli 

cells60, demonstrating functional equivalence of the two proteins. We asked whether 

MjDim1 could also complement KsgA knockout. In vivo activities of both ScDim1 and 

MjDim1 were assessed using a modified minimal inhibitory concentration (MIC) assay, 

which takes advantage of the fact that loss of KsgA function renders bacteria resistant to 

kasugamycin (ksg)59, 65. Plasmids containing the two proteins were transformed into a 

ksgR strain of E. coli, which lacks endogenous KsgA activity. This strain was constructed 

from BL-21 (DE3) cells; this allows leaky expression from the pET15b T7 promoter. 

Growth on ksg was compared to cells transformed with pET15b-KsgA plasmid (positive 

control) and cells transformed with empty vector (negative control).  

Unlike in a traditional MIC, untransformed cells are naturally resistant to the 

antibiotic and become sensitive when transformed with a functional dimethyltransferase. 

Therefore, cells transformed with KsgA have a low MIC of 400 µg/ml ksg, while cells 

transformed with empty vector have a high MIC, greater than 3000 µg/ml ksg. As shown 

in Figure 16, MjDim1 is fully functional in this in vivo system, with an MIC of 400 

µg/ml. ScDim1, on the other hand, shows partial activity on bacterial ribosomes in vivo, 

with an MIC of 1200 µg/ml. While ScDim1 does not restore full sensitivity to the 

antibiotic, it does show increased sensitivity, indicating that the enzyme is able to 

recognize the small subunit as a substrate. Lack of full complementation may correlate 

with slower and/or incomplete methylation of 30S as compared to the other two enzymes 

(see nucleoside analysis). 
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Figure 16. In vivo activity of KsgA orthologs 
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In vitro analysis 

We next asked how efficiently ScDim1 and MjDim1 were able to methylate E. 

coli 30S in an in vitro assay. Unmethylated 30S subunits were prepared from the ksgR 

strain described above. Incorporation of 3H-methyl from labeled SAM by each enzyme 

was followed at discrete time points over an interval of two hours. Control experiments 

were performed with 30S subunits purified from wild-type E. coli cells, which are 

methylated by endogenous KsgA and thus do not serve as substrates. Initial experiments 

were performed with 10 pmol of 30S substrate and 1 pmol of enzyme. This amount of 

protein did not allow for completion of the reaction within two hours, so experiments 

were also performed using 10 pmol each of 30S and enzyme. 

Figure 17, A-C, shows the time-course of methylation for KsgA, ScDim1, and 

MjDim1 respectively. Methylation of E. coli 30S by ScDim1 and MjDim1 closely 

followed the KsgA time-course, both in rate of incorporation and final level of 

methylation. In reactions with 1 pmol of protein, MjDim1 showed a slightly higher rate 

of 3H incorporation than KsgA and ScDim1 at later time points. With stoichiometric 

amounts of protein relative to 30S, the time-course of methylation was essentially 

indistinguishable between the three proteins, confirming the ability of the enzymes from 

archaea and eukaryotes to recognize bacterial 30S subunits as substrates.  

We then estimated the amount of methyl groups transferred at the 2h time point 

by each enzyme, with both 1 pmol and 10 pmol amounts of enzyme, by constructing a 

standard curve of cpm versus concentration of 3H-methyl-SAM (Figure 18). With 10 

pmol of 30S per reaction, and four methylation sites per 30S molecule, we would expect  
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Figure 17. SDS PAGE analysis of KsgA, ScDim1 and MjDim1 proteins to assess purity.  
‘L’ represents reference protein ladder (Precision Plus Protein Dual Color Standards, Bio-
Rad). 

 

L   KsgA L   ScDim1 L   MjDim1L   KsgA L   ScDim1 L   MjDim1L   MjDim1



www.manaraa.com

 

 53 

                         A     

                                 

 

 

 

 

                          

                         B       

                                

 

 

 

  

                         C                 

 

 
 
  
 
 
 
 
 
 
 
Figure 18. In vitro methylation of 30S. Time-course assays for KsgA (A), ScDim1 (B), 
and MjDim1 (C). Blue lines indicate assays containing 10 pmol ksgR 30S, 10 pmol 
enzyme and orange lines indicate assays containing 10 pmol ksgR 30S, 1 pmol enzyme. 
Assays were performed in triplicate; error bars represent standard deviation. 
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Figure 19. Quantitation of methyl groups transferred after two hours. Blue bars represent 
assays performed with 10 pmol enzyme; orange bars represent assays using 1 pmol 
enzyme. Assays were performed in triplicate; error bars represent standard deviation. 
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to see transfer of 40 pmol methyl groups per 10 pmol of 30S if the reactions have gone to 

completion. As shown in Figure 19, our calculations lead to slight overestimation of 

methyl group transfer, probably due to error in 3H counting. Nevertheless, the reactions 

performed with 10 pmol enzyme appear to be more or less complete after 2 hours. 

Reactions performed with only 1 pmol enzyme are approximately halfway completed 

after 2 hours. 

Nucleoside analysis 

In vitro assays of the three proteins, performed as described above for the time 

course, were incubated for two hours and analyzed to determine relative amounts of m6A 

and m6
2A (Figure 20; Table 1). 16S rRNA isolated from 30S subunits methylated by 10 

pmol of either KsgA or MjDim1 contained no detectable labeled m6A; radioactive 

incorporation was seen only in the dimethyladenosine peak. This agrees with the in vitro 

data suggesting that these reactions have gone to completion (Figure 19). ScDim1, on the 

other hand, produced a mixture of m6A and m6
2A; approximately 28% of the 

incorporated radiolabel was found on monomethylated adenosine. This indicates that at 

most 80% of the potential sites were methylated after two hours. 

Partially methylated 30S from reactions using 1 pmol of enzyme showed 

radioactive peaks at both m6A and m6
2A. Surprisingly, although the total level of 

methylation was similar for all three enzymes (Figure 19), rRNA methylated by the 

different enzymes showed different ratios of m6A to m6
2A. ScDim1 produced 

approximately 1.4 times as much m6A as m6
2A. MjDim1, conversely, produced almost no 

m6A; only about 1% of the incorporated methyl groups were found on m6A. KsgA fell  
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Figure 20. Representative HPLC trace. The bottom trace, plotted as cpm vs. time (shifted 
upward by 50 cpm), represents scintillation data from a control assay using wild-type 30S   
The middle trace (shifted upward by 250 cpm) represents scintillation data obtained from 
an assay using 1 pmol ScDim1 and 10pmol ksgR 30S. At the top is the UV trace, plotted 
as A254 vs. time (shifted upward by 1 OD unit), representing the reference nucleotides, 
with m6A and m6

2A peaks labeled. 
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Table 1. Quantitation of methylated adenosine species 

 Total CH3 (pmol)a Ratio m6A:m 6
2A m6A (pmol) m6

2A (pmol)b 

KsgA 
1 pmol 
10pmol 

 
18.1 ± 1.7 
37.4 ± 10.1 

 
0.8:1 

– 

 
5.2 
NDc 

 
6.5 
18.7 

ScDim1 
1 pmol 
10pmol 

 
20.1 ± 0.7 
47.4 ± 2.7 

 
1.4:1 
0.8:1 

 
8.3 
13.5 

 
5.9 
16.9 

MjDim1 
1 pmol 
10pmol 

 
24.1 ± 3.6 
48.1 ± 8.8 

 
0.02:1 

– 

 
0.2 
NDc 

 
11.9 
48.1 

 

aData from Figure 19 
b1 pmol m6

2A corresponds to 2 pmol methyl groups 
cND = none detected  
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somewhere between the other two, producing both m6A and m6
2A, with only 0.8 times as 

much m6A as m6
2A. These results could be an outcome of assaying enzymes from 

different species on the bacterial substrate, or they could reflect a difference in reaction 

mechanism. 

The KsgA/Dim1 enzymes transfer a total of four methyl groups from four SAM 

molecules to two adenosines. The exact mechanism of transfer has not yet been 

established; questions remain as to order of addition, if any, and the number of binding 

events required for the four methylations. The above data begin to address the question of 

the multiple methyl group transfers. Partially methylated 30S were produced in reactions 

containing 10 pmol 30S subunits and 1 pmol enzyme. Therefore, m6A produced in excess 

of 2 pmol (corresponding to two adenosines available for methylation per subunit) will 

only be seen if the enzyme releases the substrate after monomethylation and rebinds to a 

new substrate. With 20.1 pmol of methyl groups incorporated by 1 pmol ScDim1, the 

1.4:1 m6A: m6
2A ratio represents approximately 8.3 pmol labeled m6A and 5.9 pmol 

labeled m6
2A (1 pmol m6

2A represents 2 pmol incorporated methyl groups). Therefore, 

under our assay conditions, ScDim1 clearly releases the m6A intermediate, which is 

subsequently converted to the m6
2A product after an additional binding event. 

In contrast, there is no indication that MjDim1 produces m6A as anything but a 

transient intermediate. Of the 24.1 pmol methyl groups transferred, only 0.3 pmol were 

found on m6A. These results suggest that the archaeal enzyme preferentially forms 

dimethyladenosine, without release of the monomethyl intermediate. While release of a 

monomethyl intermediate and subsequent re-binding and addition of the second methyl 
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cannot be ruled out, such a model requires that MjDim1 prefer the monomethylated 

substrate to the unmethylated substrate to a large degree. 

In terms of m6A versus m6
2A production, KsgA falls somewhere in between 

ScDim1 and MjDim1. Unlike ScDim1, KsgA produces less m6A than m6
2A; however, of 

the 18.1 pmol of methyl groups transferred, 5.2 pmol are found on m6A, which is still 

indicative of a released intermediate. Although it is possible that these differences are a 

result of suboptimal assay conditions, these results also allow the possibility of distinct 

mechanisms for the three enzymes, thus demonstrating a need for future analysis to 

dissect the exact scheme of methyl transfer. 

Conclusions 

Substrate recognition by the KsgA/Dim1 methyltransferases is complex. KsgA is 

able to methylate 30S subunits under conditions of low Mg2+, but it can also methylate a 

pre-ribosomal particle containing 16S and a partial complement of ribosomal proteins96. 

Dim1 is essential for early processing of the pre-18S rRNA, but does not methylate 18S 

until very late in the 40S maturation process70. Despite evolutionary divergence of 

ribosomal assembly and processing pathways, eukaryotic and archaeal KsgA orthologs 

are able to methylate E. coli 30S both in vivo and in vitro. This requires the conservation 

of similar structural cues in small ribosomal subunits across evolution. Also complex is 

the mechanism of the modification performed by these enzymes. A total of four methyl 

groups are transferred, from four SAM molecules, to two separate adenosines. It is clear 

from the crystal structure of KsgA84 that only one SAM molecule is bound at a time, and 

that the adenosines enter the active site separately. It has not been determined in what 
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order, if any, the methyl groups are transferred, or if all four of the transfers take place 

within a single or multiple binding events. The work presented here demonstrates clear 

differences in the reaction intermediate profiles produced in vitro by KsgA enzymes from 

bacteria, archaea and yeast, despite the fact that the three enzymes methylate bacterial 

30S to a similar extent and at similar rates in the assay used.              

However, we cannot exclude the possibility that the differences in the respective 

rates of m6A and m6
2A production seen here are a result of suboptimal substrate or assay 

conditions rather than a reflection of true differences in mechanism. For example, the 

yeast and archaeal enzymes may show different activity if assayed on their respective 

small ribosomal subunits rather than on bacterial 30S. Our results demonstrate the 

remarkable cross-recognition of a complex substrate by evolutionarily distant members of 

an enzyme family and emphasize the need to further investigate the multi-step reaction 

mechanism. 

Experimental 

Cloning 

KsgA gene from E. coli and MjDim1 gene from M. jannaschii were previously 

cloned in our laboratory into the pET15b vector, in-frame with the vector-encoded N-

terminal poly-histidine tag, and was confirmed by sequencing. The pET15b-ScDim1 

construct was provided by Dr. Jean Vandenhaute, and was also confirmed by sequencing. 

Protein expression and purification 

pET15b-KsgA and pET15b-MjDim1 plasmids were transformed into BL-21 

(DE3) cells for overexpression. Cell cultures were grown to an OD600 of 0.6 in the 
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presence of ampicillin and induced with 1 mM IPTG (Sigma-Aldrich). After 4 hours at 

37 ºC, cells were harvested by centrifugation. Pellets were resuspended in lysis buffer (50 

mM NaH2PO4, 300 mM NaCl, 10 mM imidazole, pH 8.0), broken with two passages 

through an Emulsiflex cell breaker (Avestin), and centrifuged to remove cell debris. 

Cleared lysate was loaded onto a HiTrap Chelating column (Amersham) equilibrated 

with 0.1M NiSO4, washed twice with increasing amounts of imidazole (wash buffer 1: 50 

mM NaH2PO4, 300 mM NaCl, 20 mM imidazole, pH 8.0; wash buffer 2: 50 mM 

NaH2PO4, 300 mM NaCl, 50 mM imidazole, pH 8.0), and the protein eluted with elution 

buffer (50 mM NaH2PO4, 300 mM NaCl, 250 mM imidazole, pH 8.0).  

ScDim1 protein was expressed in BL21-CodonPlus (DE3)-RIL cells (Stratagene). 

The cells were grown at 37 ºC to an OD600 of 1.2 in the presence of ampicillin. Then the 

protein was induced under mild conditions with 0.1 mM IPTG and transferred to 25 ºC 

for four hours. Cells were harvested and broken as for KsgA and MjDim1. Purification 

was carried out by affinity chromatography using a Ni2+ column; buffers included 15% 

glycerol and 3 mM β-mercaptoethanol along with the above concentrations of NaH2PO4, 

NaCl and imidazole. To increase the stability of the protein, glycerol and β-

mercaptoethanol were added to the purified protein to final concentrations of 25% and 6 

mM, respectively. 

Proteins were estimated to be >95% pure by SDS-PAGE analysis. Protein 

concentration was measured using the Bradford method (Bio-Rad Protein Assay). 
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30S purification 

An E. coli strain lacking functional KsgA was constructed by growing BL-21 

(DE3) cells on kasugamycin (ksg) to select for loss of the dimethylations. 30S ribosomes 

from this ksgR strain were used in an in vitro assay to confirm that the adenosines were 

able to be methylated and therefore that the resistance to ksg was due to lack of KsgA 

activity. 30S subunits from both the ksgR strain and the wild-type strain were prepared as 

previously described116, except that cells were broken as described above. Purified 

subunits were dialyzed into reaction buffer (40 mM Tris, pH 7.4; 40 mM NH4Cl; 4 mM 

MgOAc; 6 mM β-mercaptoethanol) and stored at –80 ºC in single-use aliquots. 30S 

concentration was estimated by measuring the absorbance at 260 nm and using a 

relationship of 67 pmol 30S per 1 unit of optical density. 

In vivo  assay 

ksgR cells were transformed with the pET15b constructs and selected on LB plates 

containing ampicillin. Transformed colonies were picked into liquid media and grown in 

overnight culture. These cultures were diluted 1:25 in fresh LB (Luria-Bertani media) 

containing 50 µg/ml ampicillin and grown to OD600 of 0.7-0.8, diluted 1:100 in fresh 

LB, and plated onto LB/ampicillin containing increasing amounts of ksg, from 0 to 3000 

µg/ml. Plates were incubated at 37 ºC overnight and visually inspected for colony 

formation. 

In vitro  assay 

The in vitro assay was adapted from Poldermans et al.58. Time-course reactions 

were performed in 500 µl volumes containing 40 mM Tris, pH 7.4, 40 mM NH4Cl, 4 mM 
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MgOAc, 6 mM β-mercaptoethanol, 0.02 mM 3H-methyl-SAM (780 cpm/pmol; MP 

Biomedicals), 100 pmol 30S subunits, and 10 or 100 pmol enzyme; volume and 

components were sufficient for 10 reactions. Buffer and reagents were pre-warmed to 37 

ºC and added into pre-warmed tubes to minimize any lag in the reaction start. At each of 

eight designated time points 50 µl was removed and added to a pre-chilled tube 

containing 10 µl of 100 mM unlabeled SAM (Sigma-Aldrich) to quench the reaction; the 

remaining 100 µl was stored at –20 ºC and used for HPLC analysis (see below). The 

quenched reactions were deposited onto DE81 filter paper (Whatman), washed twice with 

ice-cold 5% TCA, and rinsed briefly with ethanol. Filters were air-dried for one hour, 

placed into scintillation fluid, and counted. 

HPLC analysis 

Labeled 16S rRNA was extracted from 30S subunits with 

phenol/chloroform/isoamyl alcohol. 16S was digested and dephosphorylated as described 

by Gehrke and Kuo117, and subjected to nucleoside analysis by reversed-phase HPLC. 

Nuclease P1 was obtained from USBiological, shrimp alkaline phosphatase was from 

MBI Fermentas. HPLC analysis was performed on a Polaris C-18 column (Varian). The 

HPLC system used consisted of a Waters 600 Controller, a Waters 2487 Dual λ 

Absorbance Detector, and Waters Empower software. Radioactivity was monitored with 

a Packard 150TR Flow Scintillation Analyzer. Buffer A was 20 mM NaH2PO4, pH 5.1. 

Buffer B was 20 mM NaH2PO4 (pH 5.1): acetonitrile, 70:30. Separation was performed at 

room temperature using a linear gradient from 100%A-100%B over 20 min, at a flow rate 

of 1.0 ml/min. Nucleoside standards used were N6-methyladenosine (Sigma-Aldrich) and 
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N6 N6-dimethyladenosine, synthesized as in Rife et al.102  Peak integration was calculated 

by the Empower software and used to determine ratios of m6A:m6
2A. 
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CHAPTER 4: A preliminary examination of the 16S rRNA sites 

implicated in KsgA binding 
 
 
 

Ribosome biogenesis is a fundamental cellular process yet it follows strikingly 

different pathways in prokaryotic, eukaryotic and archaeal cells24, 104.Similarities are 

extremely rare. Within such divergence, the conservation of KsgA/Dim1 family of 

methyltransferases is unique, since it represents the only rRNA post-transcriptional 

modification enzymes that appear to be conserved in all three domains of life59-61. The 

conservation also extends into mitochondria and chloroplasts63, 64.  

The enzyme was first described in E. coli, where it catalyzes the conversion of 

two adjacent adenosines A1518 and A1519, also conserved, in the 30S subunit rRNA to 

N6,N6-dimethyladenosines57, 58. The methyltransferase has since been described in 

eubacteria59, archaeabacteria62, eukaryotes60, 61 and in cellular organelles63, 64.  

Connolly et al. recently offered a mechanistic explanation for the extreme 

conservation of the KsgA/Dim1 family of enzymes69. They suggest that KsgA functions 

as a late stage ribosome biogenesis factor and that the methylation triggers release of 

KsgA from the assembling subunit, allowing it to finally mature and enter the translation 

cycle with the speculation that it functions as a gatekeeper. On the other hand, Dim1 had 

the additional role of being an essential member of the processome. Connolly et al. also 

reported that a ∆ksgA genotype in E. coli is linked to cold sensitivity and altered 
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ribosomal profiles, and that a methyltransferase-inactive form of KsgA is profoundly 

deleterious to cell growth and ribosome biogenesis69.  

The binding site of KsgA on the 30S ribosomal subunit is thought to overlap with 

that of IF3 binding site and 50S subunit association sites91. Xu et al. observed that 

addition of IF3 lead to a loss of directed cleavage of 16S rRNA by KsgA in their 

hydroxyl radical probing experiments91. Hence, one of the roles of KsgA could be to 

occlude these translational components from binding until an ‘appropriate’ assembly of 

structurally and functionally competent 30S subunit has occurred91. These recent 

additions to the roles and importance of KsgA in prokaryotes prompt the consideration of 

KsgA as a potential antimicrobial drug target. 

In order to gain complete insight into the role of KsgA in ribosome biogenesis and 

how it interacts with other ribosome biogenesis factors or chaperons, it is extremely 

important to determine the binding site of KsgA on the 30S subunit. However, there 

seems to be a great deal of incongruity in the literature regarding this information. The 

model of KsgA-16S rRNA complex, proposed by Xu et al.91 based on hydroxyl radical 

probing and footprinting data, positions KsgA such that its N-terminal domain interacts 

with the 790 loop of 16S rRNA and almost the entire protein interacts with the top 

portion of helix 44 in a linear fashion. This arrangement puts the target adenosines of 

helix 45 within close proximity to the active site of KsgA (motif VIII)84, but KsgA never 

binds helix 45.  

On the other hand, Tu et al. recently reported the crystal structure of Aquifex 

aeolicus KsgA bound to double stranded RNA via the cleft between its N- and C-terminal 
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domains99. The RNA used in their study represents the helix 45 of E. coli 16S rRNA. 

Helix 45, according to the structure of E. coli 30S subunit18, forms a hairpin structure 

capped by a GGAA tetraloop that contains the target adenosines methylated by KsgA. 

However, the KsgA-RNA crystal structure reported by this group shows a duplex formed 

by the association of two RNA molecules instead of a hairpin formed by a single RNA 

molecule. This unnatural form of RNA leaves room for skepticism on whether KsgA 

truly binds helix 45 in vivo.  Moreover, the mode by which KsgA interacts with 16S 

rRNA is also different as per the above two reports. The different binding modes require 

dramatically different mechanistic details of KsgA. 

We examined the 16S rRNA sites implicated by the above models in binding to 

KsgA using site directed mutagenesis and in vitro methods. Our results indicate that 

KsgA does not bind at the site of methylation and support the proximity model, whereby 

KsgA remains anchored to helix 44/790 loop and awaits the presentation of the target 

adenosines in the loop of helix 45.  

Sites of mutation 

To interrogate, we made mutations in the helix 24, helix 44 and helix 45 of the E. 

coli 16S rRNA (Figure 21).  

Helix 24 mutations 

The hydroxyl radical probing and footprinting data reported by Xu et al. indicates 

that the 790 loop, G785-C797, of helix 24 makes direct interactions with KsgA91. 

However, their model of KsgA-16S rRNA complex puts this region of 16S rRNA into a 

steric clash with KsgA.  There is a possibility that the conflict is an adverse effect of  
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G791A,C,U

A1418C

Del2bp

Add2bp

Del790loop

A1483C

DelHel45

G791A,C,U

A1418C

Del2bp

Add2bp

Del790loop

A1483C

G791A,C,U

A1418C

Del2bp

Add2bp

Del790loop

A1483C

DelHel45

                   
 
 
 
 
 
Figure 21. Location of the mutated nucleotides in the sequence and secondary structure 
of E. coli 16S rRNA. rRNA image adapted from Noller et al.118. 
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creating the model using 16S rRNA of 30S subunit in active conformation, which is not 

the true substrate for KsgA108. Therefore, we wanted to study how KsgA interacts with 

the 790 loop of 30S subunit that is in the inactive conformation.   

G791 of the 790 loop is a highly conserved nucleotide. Cunningham et al. has 

mutated this nucleotide to analyze its role in protein synthesis119. From their work, we 

know that G791 mutations retain at least intermediate activity and therefore such mutant 

30S can be assembled properly to a significant proportion. Thus, we chose G791 for our 

study and independently mutated it to A, C and U. Also, we created the Del790loop 

mutant by removing nucleotides G785-C797 and replacing them with a GAAA tetraloop 

to retain the overall topology of the region. 

Pure, in vivo-derived mutant 30S ribosomal subunits for our assays were obtained 

using the MS2 affinity purification system developed by Youngman and Green120. In this 

approach, the 16S rRNA of mutant ribosomes is expressed from a plasmid-borne operon 

in a background of wild-type ribosomes. The system allows inducible expression of 

tagged ribosomes, permitting the expression of even dominant-negative 16S rRNA 

mutants. The mutant ribosomes are affinity tagged with an RNA stem-loop that allows 

specific binding to the coat protein of the MS2 bacteriophage; the MS2 coat protein is in 

turn immobilized as a fusion with glutathione S-transferase (GST) to a glutathione 

matrix. At low Mg+2 concentrations (0.3 mM), the 70S subunit falls apart into its 

constituent subunits111, hence buffers with low Mg+2 concentrations were used on the 

affinity column to selectively retain mutant 30S and wash away any 50S subunits bound 

to them. The advantage of the MS2 affinity system is that it is efficient and since the  
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Figure 22. Sucrose gradient analysis to assess the structural integrity of 30S subunits. 
250 pmols of 30S were loaded on to 10-30% sucrose density gradients. The fractions 
were collected from top to bottom. The 16S rRNA carrying Del790loop mutation did not 
form any 30S. The numbers 1-4 on the gradient profiles indicate peaks of subunit 
assembly products, where peak 4 contains fully formed 30S subunits whereas the others 
are intermediates. Peak 1 of G791C could not be collected due to a technical problem 
with the fraction collector. 
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mutant 30S subunits are assembled in vivo, they do not suffer from severe functional 

limitations that are encountered with in vitro reconstituted subunits.   

The purified mutant 30S subunits were assessed for their structural integrity by 

running them on 10-30 % sucrose density gradients prepared in low magnesium buffer 

(Figure 22). Untagged wild-type 30S purified from MRE600R strain and tagged wild-type 

30S (has the MS2 tag in its 16S rRNA, but no mutation) purified from DH5αR+ pcI+ 

pSpurMS2 strain were run as a control. The MS2-tagged 30S subunits migrate as heavier 

species than the untagged ones (Figure 22A, B). Youngman and Green had observed a 

similar phenomenon with tagged 50S and attributed it to the GST-MS2 fusion protein 

bound to the ribosomes120. The mutant Del790loop, unfortunately, did not form any 

detectable 30S. It was intriguing that the profiles, including that of the tagged wild-type 

30S, showed similar multiple intermediate assembly products at the top of the gradient 

before the actual 30S peak (peak 4). This phenomenon was not observed in case of MRE 

600R untagged 30S. Therefore, it seems that the presence of MS2 tag causes a slight 

reduction in the efficiency of 30S subunits to assemble, which may then be aggravated by 

the presence of mutations. We collected the individual peaks for each mutant and assayed 

them for methylation by KsgA. For the G791C mutant, we could not collect the first peak 

due to a technical problem with the fraction collector. 

In vitro analysis 

We first compared the ability of KsgA to methylate 30S subunits bearing the MS2 

tag to that of the untagged 30S (Figure 23A). Experiments were carried out with tagged 

wild type 30S subunits purified from Kasugamycin (ksg) resistant (Tagged-WT) and ksg 
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sensitive (WT Tagged-WT) DH5α cells, and untagged 30S subunits purified from ksg 

resistant MRE600 cells (Untagged MRE600R). The incorporation of 3H-methyl from S-

adenosyl methionine (SAM) into the 30S was followed at discrete time points over an 

interval of 2 h. The concentration of Mg+2 in the reactions was adjusted to 4mM, a value 

shown to be optimal for KsgA function58. The Tagged-WT 30S showed fewer 

scintillation counts than the untagged 30S subunits, however this difference was within 

the range of error.  

We then assayed the ability of KsgA to methylate the mutant subunits. The 

activity of assembly intermediates and 30S subunits collected from the sucrose gradients 

was compared to that of subunits not subjected to sucrose gradient, in a 2hr end point 

assay (Figure 23B). As control, this experiment was also performed with tagged wild-

type 30S. Peaks 1, 2 and 3 did not yield enough subunits to perform a full reaction and 

hence, for those peaks, the reaction components and volume were reduced to half. These 

peaks, which represent intermediates of 30S subunit assembly, showed no activity and so 

were not pursued further. However, this data provided an important observation that 

KsgA does not methylate early intermediate assembly particles.  

The G791 mutant subunits from the largest particles were approximately 50% as 

active as the wild type, with G791U being the most active of all. The subunits not 

subjected to sucrose gradients (non sucr grad, Figure 23B) are the pool of tagged subunits 

purified off the GST-affinity column. It was surprising that, in case of the mutants as well 

as the control, the non-sucrose gradient subunits showed greater activity than the pure  
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Figure 23. In vitro methylation assay of subunits. (A) Time-course assays for various 
control 30S subunits. (B) 2 h end point assay. The activity of assembly intermediates and 
30S subunits collected from the sucrose gradients was compared to that of subunits not 
subjected to sucrose gradient. Time course assay for 790 loop mutants (C) and (D). The 
difference between (C) and (D) is that the 30S subunits used in (D) were subjected to a 
sucrose gradient for assessing their structural integrity. (E) Number of pmol of methyl 
groups per 10 pmol of 30S transferred after 2h. All the above reactions contained 200nM 
KsgA, 200nM subunits and 0.02 mM, 780cpm/pmol 3H-methyl-SAM. However, due to 
insufficient yield of subunits, the reaction volumes for peak 1, 2 and 3 were reduced to 
half that of others. Assays were performed in triplicate; error bars represent standard 
deviation. CPM stands for Counts per Minute 
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30S subunits isolated via sucrose gradients (peak 4). To further understand this 

unexpected difference, we followed the methylation of both types of subunits over the 

course of two hours (Figure 23C, D). Although the overall activity trends in (C) and (D) 

did not look very different, the scintillation count of each reaction in (D) was lower than 

its counterpart in (C). Also notable is the slow onset of methylation in case of (D). 

Del790loop showed just above background activity. This was not surprising given the 

fact that no 30S subunits were detected for this mutant by sucrose gradient analysis 

(Figure 22F). 

           We also determined the extent of methylation at the 2 h time point for both, 

sucrose gradient purified 30S and non-sucrose gradient 30S subunits of each mutant 

(Figure 23E) using the specific activity of 3H-methyl-SAM. With 10 pmol of 30S per 

reaction, and four methylation sites per 30S molecule, we would expect to see transfer of 

40 pmol methyl groups per 10 pmol of 30S if the reactions have gone to completion. As 

can be seen in Figure 23E, the non-sucrose gradient Tagged-WT reaction appears to have 

reached completion whereas that of sucrose gradient Tagged-WT seems to be lagging 

behind. Also, the sucrose gradient reactions of G791 mutants show less methylation as 

compared to their non-sucrose gradient reactions. This may be due to partial deterioration 

of 30S subunits, caused by the extra handling steps involved in sucrose gradient analysis. 

Hence, for the subsequent mutants, only the non-sucrose gradient 30S subunits were 

assayed.  
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Figure 24. HPLC traces. (A), (B), (C) and (D) respectively represent the traces of Tag-
WT, G791A, G791C and G791U, at the end of a 2 h reaction.  At the top is the UV trace, 
plotted as A254 (arbitary units) vs. time, representing the reference nucleotides, with m6A 
and m6

2A peaks labeled. At the bottom is the scintillation trace, plotted as cpm vs. time, 
showing the type and extent of methylation. 
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Table 2. Extent of methylation of wild type and G791 mutant 30S by KsgA. Normalized 
percent is the ratio of mutant to wild type area under peak/nmol x 100.  
* Area under the dimethyladenosine scintillation peak. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mutation Conc. of sample 
(nmol/80 µl) 

Area under the 
peak* 

Area under 
peak/nmol 

Normalized 
percent (%) 

Tag-WT 15.36 3253763 211833.52 100 

G791A 19.68 2264810 115081.80 54.32 

G791C 13.28 1872381 140992.54 66.55 

G791U 15.2 1714992 112828.42 53.26 
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Nucleoside Analysis 

            As seen in Figure 23E, for both sets, the G791 mutants showed approximately 

50% methylation as compared to Tagged-WT. We asked if the reduced activity of the 

mutants came from poor binding of KsgA to such 30S or was due to reduced catalysis 

resulting from the disruption of important interactions between KsgA and G791. The 

KsgA/Dim1 enzymes transfer a total of four methyl groups from four SAM molecules to 

two adenosines. Therefore each adenosine should be dimethylated. However, we have 

previously established that the KsgA/Dim1 enzymes produce a mixture of 

monomethyladenosines (m6A) and dimethyladenosines (m6
2A) when they cannot bind 

their substrates tightly62, 121. Therefore, to determine whether the observed reduction in 

the methylation was the result of reduced KsgA binding, we performed nucleoside 

analysis using HPLC to measure the ratio of m6A and m6
2A.                       

 For this analysis, only the non-sucrose gradient 30S subunits were used. In vitro 

assays for all three mutants and the control were incubated for two hours. At the end 

point, the 16S rRNA was extracted from the 30S subunits and subsequently digested and 

dephosphorylated. Component nucleosides were separated by reversed-phase HPLC. 

Peaks corresponding to m6A and m6
2A were assigned by comparison to reference 

nucleosides (Figure 24). Extent of methylation was determined by calculating the area 

under the m62A scintillation peak per nmol for each mutant and then normalizing the 

values to that of Tag-WT. 

           16S rRNA isolated from none of the mutant 30S subunits contained measurable 

amounts of labeled m6A. Although only about 50% of the potential sites were methylated 
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in case of G791 mutants, almost 100% of the incorporated radiolabel was seen in the 

dimethyladenosine peak. Such predominance of m6
2A clearly indicates that the mutations 

at G791 do not diminish the ability of 30S to be involved in a tight complex with KsgA. 

This, together with the fact that G791 lies in close proximity to the target adenosines and 

catalytic core of KsgA in Xu’s model91, indicates that the reduced activity of the mutants 

must be due to reduced catalysis resulting from the disruption of important interactions 

between KsgA and G791.  

Helix 44 Mutations 

           Another region of 16S rRNA that defines the binding site of KsgA, as per the 

KsgA-16SrRNA model proposed by Xu et al., is helix 4491. To test this premise, we took 

advantage of the well conserved tandem sheared A•G base pairs, G1417•A14183 and 

A1418•G1482, of helix 44 (Figure 25). According to Xu’s model, the adenosines of these 

base pairs make primary interactions with the highly conserved residues R221, R222 and 

K223 of the C-terminal domain of KsgA83, 91.  

            The characteristic of two consecutive sheared A•G base-pairs is that, although 

each A•G base pair can distort the helix individually, when a G•A base pair is followed 

by another A•G base pair, they are arranged such that the distortion caused by the first 

base pair is compensated by that caused by the other, thus maintaining the overall 

regularity of the helix122, 123. We created the A1418C and A1483C mutants, in which the 

corresponding sheared A•G base pair was replaced by a C:G base pair. The helix 44 of 

these mutants, carrying only one of the two consecutive sheared A•G base pairs, should 

be fairly distorted. Therefore, if the interaction between KsgA is governed to an  
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Figure 25. (A) Secondary structure of Helix 44 and 45 showing the location of the 
tandem sheared A•G base pairs. A1418 and A1483 were mutated to a C, one at a time. 
rRNA image adapted from Noller et al.118 (B) Chemical structure of sheared A•G base 
pair, as per Gutell et al.122   
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Figure 26.  Sucrose gradient analysis of A1418C (A) and A1483C (B) mutants. (C) Time 
course activity assay of affinity purified, non-sucrose gradient, mutant 30S subunits. (D) 
Number of pmol of methyl groups transferred after 2h. The reactions in (C) contained 
200nM KsgA, 200nM subunits and 0.02 mM, 780cpm/pmol 3H-methyl-SAM. Assays 
were performed in triplicate; error bars represent standard deviation. CPM stands for 
Counts per Minute. 
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important degree by the local structure around A1418 and A1483, then mutation of these 

residues should affect KsgA’s ability to bind and modify 30S subunits.             

 For our assays, pure mutant 30S subunits were obtained using the MS2 affinity 

purification system. Structural integrity of the mutant 30S subunits was assessed by 

sucrose density gradients. The sucrose gradient profiles were comparable to that of the 

G791 mutants (Figure 26A and B). Time course assays were performed in triplicate for 

the affinity purified, non-sucrose gradient, mutant 30S subunits (Figure 26C). As a 

control, Tagged-WT 30S were also assayed. The amount of methyl groups transferred at 

the end of 2 h was determined using specific activity of 3H-methyl-SAM (Figure 26D).  

           A1418C showed 10% less activity as compared to Tagged-WT, whereas A1483C 

mutant showed wild type activity in terms of the total number of methyl groups added. It 

was remarkable that although their reactions reached near completion at the end of 2 h, 

both mutants showed slower onset of activity as compared to wild type. It is possible that 

the distortion in mutant helix disrupts KsgA binding, causing it to fall off more 

frequently, thereby reducing the initial rate of reaction. If this is true, KsgA must produce 

a mixture of m6A and m6
2A. To follow the type of methylation produced by KsgA along 

the course of two hours, we performed nucleoside analysis of the time course assays. 

            For both mutants, even at the 2 minute time point, almost all incorporated 

radiolabel was in the form of m62A (Figure 27). No detectable m6A was found to indicate 

that the slow onset of activity is due to poor binding of KsgA to mutant 30S subunits. It 

therefore appears that the slow onset and the marginally reduced activity at the end of 2 h 

are the result of helical distortion affecting catalysis. However, mutation of R221-K223  



www.manaraa.com

 

 82 

Tag-WT 120min

-500

0

500

1000

1500

2000

2500

3000

3500

4000

0 4 8 12 16 20

time (min)

cp
m

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

A
25

4

m6A
m6

2A

Tag-WT 2min

-500

0

500

1000

1500

2000

2500

3000

3500

4000

0 4 8 12 16 20

time (min)

cp
m

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

A
25

4

m6A
m6

2A

Tag-WT 120min

-500

0

500

1000

1500

2000

2500

3000

3500

4000

0 4 8 12 16 20

time (min)

cp
m

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

A
25

4

m6A
m6

2A

Tag-WT 120min

-500

0

500

1000

1500

2000

2500

3000

3500

4000

0 4 8 12 16 20

time (min)

cp
m

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

A
25

4

m6A
m6

2A

Tag-WT 2min

-500

0

500

1000

1500

2000

2500

3000

3500

4000

0 4 8 12 16 20

time (min)

cp
m

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

A
25

4

m6A
m6

2A

Tag-WT 2min

-500

0

500

1000

1500

2000

2500

3000

3500

4000

0 4 8 12 16 20

time (min)

cp
m

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

A
25

4

m6A
m6

2A

A1418C 120min

-500

0

500

1000

1500

2000

2500

3000

3500

4000

0 4 8 12 16 20

time (min)

cp
m

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

A
25

4

m6A
m6

2A

A1418C 2min

-500

0

500

1000

1500

2000

2500

3000

3500

4000

0 4 8 12 16 20

time (min)

cp
m

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

A
25

4

m6A

m6
2A

A1418C 120min

-500

0

500

1000

1500

2000

2500

3000

3500

4000

0 4 8 12 16 20

time (min)

cp
m

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

A
25

4

m6A
m6

2A

A1418C 2min

-500

0

500

1000

1500

2000

2500

3000

3500

4000

0 4 8 12 16 20

time (min)

cp
m

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

A
25

4

m6A

m6
2A

A1483C 120min

-500

0

500

1000

1500

2000

2500

3000

3500

4000

0 4 8 12 16 20

time (min)

cp
m

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

A
25

4

m6A
m6

2A

A1483C 2min

-500

0

500

1000

1500

2000

2500

3000

3500

4000

0 4 8 12 16 20

time (min)

cp
m

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

A
25

4

m6A
m6

2A

A1483C 120min

-500

0

500

1000

1500

2000

2500

3000

3500

4000

0 4 8 12 16 20

time (min)

cp
m

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

A
25

4

m6A
m6

2A

A1483C 2min

-500

0

500

1000

1500

2000

2500

3000

3500

4000

0 4 8 12 16 20

time (min)

cp
m

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

A
25

4

m6A
m6

2A

A                                                                         B 

 

     

 

 

 

 

C                                                                         D 

    

    a 

 

 

 

 

 

E                                                                         F 

 

 

 

 

 
 
 
 
Figure 27. HPLC traces. (A), (C) and (E), respectively, represent the traces of Tag-WT, 
A1418C and A1483C reactions at the 2 min time point, whereas (B), (D) and (F) 
represent the respective traces at the end of 2 h. The top and bottom traces are as 
described in Figure 24. 
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Table 3.  Extent of methylation of wild type and helix 44 mutant 30S by KsgA at 2, 5, 
10, 30, 60 and 120 min. Normalized percent is the ratio of mutant to wild type area under 
peak/nmol x 100.  
* Area under the dimethyladenosine scintillation peak. 
 

 

 

 

 

Mutation  Time 
(min) 

Conc. of sample 
(nmol/80 µl) 

Area under 
the peak* 

Area under 
peak/nmol 

Normalized 
percent (%) 

Tag-WT 

2 
5 
10 
30 
60 
120 

14.88 
14.56 
15.2 
14.88 
15.68 
15.36 

2094513 
2335944 
2657800 
2807826 
3044237 
3253763 

140760.28 
160435.71 
174855.26 
188697.98 
194147.76 
211833.52 

66.44 
75.73 
82.54 
89.07 
91.65 
100 

A1418C 

2 
5 
10 
30 
60 
120  

10.08 
13.28 
12.64 
10.4 
9.28 
12.16 

 
716950 
1536793 
1792748 
1602480 
1509784 
2258209 

 

71125.99 
115722.36 
141831.32 
154084.61 
162692.13 
185707.97 

33.57 
54.62 
66.95 
72.73 
76.80 
87.66 

A1483C 

 
2 
5 
10 
30 
60 
120 

 

 
13.6 
16.32 
15.68 
13.76 
13.12 
15.2 

 

1452401 
1968382 
1969140 
2176047 
2498835 
3147252 

106794.19 
120611.64 
125582.90 
158142.95 
190459.98 
207056.05 

 
50.41 
56.93 
59.28 
74.65 
89.91 
97.74 
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in KsgA, which represent three of the six conserved C-terminal residues, leads to reduced 

activity by virtue of reduced binding121(O'Farrell, H. C.; Rife, J. P., unpublished results). 

This suggests that either RRK residues do not directly interact with the sheared base pairs 

of helix 44 or the mutations and distortion of the helix are insufficient to affect binding 

with RRK residues, only reducing catalysis marginally. More work is required to resolve 

between these possibilities. 

Helix 45 mutations 

            We wanted to determine whether KsgA binds directly on the helix 45 of 16S 

rRNA or if it binds the surrounding structures and helix 45 only reaches out and presents 

the target adenosines to the active site of KsgA. 

            Ofengand and group made point mutations in helix 45 and tested the reconstituted 

mutant 30S subunits for methylation by KsgA93, 124. The results, however, do not indicate 

whether the reduced methylation observed in case of some mutants (G1523A and 

C1524U) is due to the disruption of KsgA binding site on helix 45 or due to 

conformationally altered presentation of the target adenosines at the active site of KsgA. 

We wanted to make mutations which did not affect the helical conformation of helix 45. 

            Therefore, we made a pair of mutations, Add2bp and Del2bp, at the base of helix 

45 with the intention of preserving the local helical structure while significantly altering 

the position of the target adenosines relative to the bulk of the 30S subunit. In the first, 

two G:C base pairs were inserted between C1510:G1525 and G1511:C1524, whereas in 

the latter, two base pairs, C1509:G1526 and C1510:G1525, were deleted from the base of 

helix 45. These mutations, respectively, elongate or shorten the helix. The greatest 
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conservation for this part of helix 45 is the fact that there are a constant number of 

Watson-Crick base pairs. While there is some conservation of sequence, the greatest 

conservation appears to be the conserved helical structure. Therefore, adding two base 

pairs or deleting two such base pairs should not affect the conformation of target 

adenosines or the overall conformation of the helix. Also, the crystal structure of KsgA-

RNA reported by Tu et al. shows that this region is outside the KsgA binding site99, 

which means that at least the insertion of two base pairs in this region should not affect 

the binding of KsgA on helix 45, should it truly bind as reported by the authors of this 

study. On the other hand, if KsgA binds in such a way as to include direct interactions 

with helix 44 and the 790 loop, then helix 45 must reach out into the active site of KsgA. 

Therefore, helix 45 with two additional base pairs added might be too long to properly fit 

into the active site of KsgA. Conversely, a helix with two base pairs removed might be 

too short for the target adenosines to be able to reach it. In either case, the target 

adenosines would not be in proper position for efficient methylation. We also made one 

other mutant, DelHel45, in which the entire helix 45 was deleted, hoping to determine if 

KsgA can bind 16S rRNA in the absence of helix 45.  

            Like for the previous mutants, we examined the structural integrity of affinity 

purified, mutant subunits by running them on 10-30 % sucrose density gradients prepared 

in low magnesium buffer (Figure 28A-C). Unfortunately, the Del2bp and DelHel45 

mutants did not form any detectable 30S subunits. The Add2bp mutant did produce a 

peak at the expected position; however, a 50S subunit admixture was also observed 

(Figure 28B). 2D gel electrophoresis analysis of the Add2bp mutant subunits revealed  
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Figure 28.  Sucrose gradient analysis of Del2bp (A), Add2bp (B) and DelHel45 (C) 
mutant 30S subunits. Del2bp and DelHel45 did not form any detectable 30S. The sharp 
peak on right, in case of Add2bp, was confirmed by 2D gel electrophoresis as 50S 
contamination (data not shown). (D) Time course activity assay of affinity purified, non-
sucrose gradient, Add2bp 30S subunits. The reactions contained 200nM KsgA, 200nM 
subunits and 0.02 mM, 780cpm/pmol 3H-methyl-SAM. Assays were performed in 
triplicate; error bars represent standard deviation. CPM stands for Counts per Minute. 
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Figure 29. Two-dimensional gel electrophoresis analysis. Ribosomal proteins extracted 
from 30S subunits of MRE600R isolated by sucrose gradient (A), affinity purified 30S 
subunits of Tag-WT (B), affinity purified mutant 30S subunits of Add2bp (C), 50S 
subunits of Tag-WT isolated by sucrose gradient (D). The indicated region of (C) shows 
additional protein spots comparable to those in (D), indicating that the 30S of Add2bp 
were contaminated with 50S subunits.  
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Figure 30. HPLC trace of Add2bp mutant at the end of a 2 h reaction. The top and 
bottom traces are as described in Figure 24. 
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Table 4.  Extent of methylation of wild type and Add2bp mutant 30S subunits by KsgA 
at the end of a 2 h reaction. Normalized percent is the ratio of mutant to wild type area 
under peak/nmol x 100.  
* Area under the dimethyladenosine scintillation peak. 

Mutation Conc. of sample 
(nmol/80 µl) 

Area under 
the peak* 

Arear under 
peak/nmol 

Normalized 
percent (%) 

Tag-WT 15.36 3253763 211833.52 100 

Add2bp 13.28 398633 30017.54 14.17 
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that the second peak appeared due to the presence of 50S subunit impurity (Figure 29). 

Previous work by us confirmed that under the salt conditions used, even stoichiometric 

amounts of 50S have no deleterious effect on methylation. Therefore, the Add2bp mutant 

was used without further purification for qualitative analysis. A time course assay (Figure 

28D) revealed very low levels of activity, which was confirmed by HPLC (Figure 30) 

and the presence of m6
2A.  No m6A was observed, indicating that tight binding between 

KsgA and this mutant 30S particle remained.  Certainly, a more complete picture would 

have emerged had the Del2bp and the DelHel45 mutations produced fully formed 30S-

like particles. Nevertheless, these results with Add2bp support our proximity model, 

whereby KsgA remains anchored to helix 44/790 loop and awaits the presentation of the 

target adenosines in the loop of helix 45.       

           Considering the position of helix 45 in the structure of E. coli 30S subunit18, if 

KsgA were to bind on helix 45, it would require the enzyme to be fairly embedded in the 

16S rRNA and a corresponding large alteration of 16S conformation, something not seen 

in chemical protection experiments91. Although it has been indicated that A1518 and 

A1519 are more exposed to the solvent in the inactive state than in the active state100, this 

shift cannot be so drastic as to allow KsgA to bind helix 45 without facing spatial clashes 

with the surrounding rRNA. Also, in this case, KsgA will have to significantly disrupt the 

tertiary structure of the region in an attempt to detach after completion of methylation. 

This seems highly improbable, especially since KsgA release has been thought to bring 

about the final maturation and passage of the 30S subunits into the translation cycle69. 
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Additional mutations 

We have made several other mutations in the 16S rRNA of E. coli than those discussed 

above. However, the purification of these mutants over the GST Trap column was 

problematic, and the 30S stocks were found to be severely contaminated with 50S 

subunits. The Rife lab will continue to work on obtaining pure 30S subunits for these 

mutants and analyzing them for KsgA activity. Here, I list the mutants and the rationale 

behind creating them. 

1) AddA: KsgA transfers a total of four methyl groups from four SAM molecules to two 

adenosines, A1518 and A1519. However, the exact mechanism of the transfer remains to 

be established. Cunningham et al. reported that mutation of either adenosine does not 

disrupt dimethylation of the other, ruling out any obligate order of methylation93. We 

asked if KsgA simply scans its target site and adds as many methyl groups as possible, or 

if it is specific for transferring four methyl groups to two adenosines. To test this, we 

inserted an additional adenosine between the target nucleotides, A1518 and A1519.  

2) G1523A and C1524U: Formenoy et al. tested the importance of the highly conserved 

U1512•G1523 base pair and surrounding residues as recognition element for KsgA and 

observed an 80% reduction in methylation when G1523 was mutated to A or when 

C1524 was mutated to U124. However, they used 30S subunits reconstituted using TP30 

and in vitro transcribed 16S rRNA for their experiments. We want to determine if their 

results can be reproduced using in vivo derived mutant 30S subunits, and compare the 

efficiency of the reconstitution system with that of the in vivo derivation system. 
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3) G926 and A1394 mutants: The inactive state of the 30S subunit is not a mere 

loosening or unfolding of its active conformation. Moazed et al. described the inactive 

state as a structurally different state where some bases become more exposed to the 

solvent while some others become more sequestered111. Among the sites reported by the 

group to undergo an increase in chemical reactivity when changed from active to inactive 

state are the 923 to 927 and 1391 to 1401 intervals. In the tRNA binding studies carried 

out by Ericson et al., the delG926 mutation seemed to lock the e30S subunit in the 

inactive state, where as the A1394 mutations seemed to lock it in the active state125. We 

believe that these phenomena occur due to depletion of the Mg+2 cation that interacts with 

both, G926 and A1394 in the active state. According to the structure of E. coli 30S 

subunit18, the distance between G926 or A1394 and the KsgA target site is so great that a 

direct interaction of KsgA with these nucleotides seems unlikely. We have created 

mutations of G926 and A1394 to determine how KsgA activity is dependent upon Mg+2 

concentration and the 30S conformation. 

Conclusions 

The presence and function of KsgA has been conserved throughout evolution. It is 

anticipated that the binding site of this universally conserved enzyme on 30S subunit will 

also be conserved. We carried out a preliminary examination of some of the 16S rRNA 

sites implicated in KsgA binding. Our results indicate that G791 of the 790 loop, and to 

some extent, the sheared base pairs of helix 44 are important for the catalytic activity of 

KsgA. KsgA failed to indicate any direct interactions with helix 45 in our experiments. 

Therefore, it appears that helix 45 is not involved in binding to KsgA; rather it only 
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presents the target adenosines in its loop at the active site of KsgA. These observations 

support the proximity model, previously reported by Xu et al.91  

Experimental 

Bacterial strains and plasmids 

The bacterial strains used in this study were E. coli MRE600, DH5α (Invitrogen) 

and BL21-DE3 (Invitrogen). Recombinant KsgA was obtained as described by O'Farrell 

et al.109.  

The plasmid pGSTMS2 (gift from Prof. Rachel Green, Johns Hopkins University) 

expresses the GST-MS2 fusion protein in large quantities. This plasmid was transformed 

into BL21-DE3 cells. Growth and induction were carried out according to Youngman and 

Green120. 

The plasmids pSpurMS2 and pCI1857 were also a generous gift from Prof. Green. 

pSpurMS2 had been constructed by inserting MS2 tag in the E. coli rrnC operon of the 

plasmid pLK35. The rrnC operon is under the control of the lambda operator/promoter 

and this promoter system allows inducible expression of tagged ribosomes126. Mutations 

Del790loop, G791A, G791C, G791U, A1418C, A1483C, Add2bp (adding two G-C base 

pairs in helix 45), Del2bp (deleting two G-C base pairs in helix 45) and DelHel45 were 

introduced into the 16S rRNA gene of the pSpurMS2 rrnC operon by sited directed 

mutagenesis (Quickchange XL, Stratagene and Phusion, Finnzymes). The sequences of 

the primers used to create the mutations are listed in Table 5 (see Appendix). Primer 

information is given in appendix. The sequences of all clones were confirmed by 

sequencing at Nucleic Acids Research Facilities, Virginia Commonwealth University. 
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 The Dh5α cells were first transformed with pcI857, which contains the 

temperature-sensitive cI857 allele of the λ repressor gene. The λ cI857 repressor 

completely represses transcription from rrnC of pSpurMS2 at 30 °C, but is inactivated at 

42 °C allowing transcription from rrnC127. To obtain 30S subunits unmethylated at 

A1518 and A 1519, a standard procedure of selecting for strains resistant (>600 ug/ml) to 

the antibiotic kasugamycin was followed110. One such resistant strain (DH5αR + pcI) was 

then used to obtain untagged 30S or was transformed with wild type or mutant pSpurMS2 

to obtain wild type or mutant MS2 tagged 30S, respectively. 

Purification of His-tagged KsgA 

KsgA was purified on a HiTrap Chelating column (Amersham Pharmacia) as 

previously described in Chapter 2. Purity was assessed by SDS-PAGE. Purified protein 

was dialyzed into storage buffer containing 50mM Tris, pH 7.4, 400mM NH4Cl, 6mM 

BME and 10% glycerol. Concentration was estimated using Bradford method. Protein 

was stored at 4 °C. 

Purification of GST-MS2 fusion protein 

GST-MS2 fusion protein was purified as previously described120. Briefly, the 

clarified cell lysate from two liters induced culture was mixed with 10ml Glutathione–

Sepharose resin (Amersham Biosciences) pre-equilibrated in 1x PBS (140mM NaCl, 

2.7mM KCl, 10.2mM Na2HPO, and 1.8mM KH2PO4) and stirred at room temperature for 

30min. The mixture was then loaded onto an empty gravity flow column and the settled 

column was washed with 100ml 1x PBS. GST-MS2 protein was eluted with 40ml elution 
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buffer (50mM Tris–HCl pH 8.0, 10mM reduced glutathione), dialyzed against three 1-L 

changes of storage buffer (1x PBS, 20% glycerol) and stored at –80 °C.  

Purification of submethylated 30S ribosomal subunits 

Control untagged ribosomes were obtained from strain MRE600 and DH5αR + 

pCI via ultracentrifugation across a sucrose gradient using standard techniques111. 

In order to obtain pure, in vivo-derived mutant 30S ribosomal subunits for our 

assays, we used the MS2 affinity purification system developed by Youngman and 

Green120. In this approach, the 16S rRNA of mutant 30S is expressed from a plasmid 

borne operon in the background of wild-type ribosomes. Since mutant 30S subunits are 

assembled in vivo, they do not suffer from severe functional limitations that are 

encountered with in vitro reconstituted subunits.  

Briefly, saturated cultures of DH5α cells carrying the plasmids pcI857 and 

pSpurMS2, grown at 30 °C with amp (100ug/ml), kan (100ug/ml) and ksg ( 400 ug/ml), 

were diluted 50-fold into LB with  amp (100 ug/ml) and grown to OD600 ~0.7-0.8 at 42 

°C, to express tagged ribosomes. To obtain purified tagged 30S subunits, a 5 ml GSTrap 

FF FPLC column (Amersham Biosciences) was used. Per 70 mg crude ribosomes, 3mg 

GST-MS2 was loaded onto the column and washed with 10 ml binding buffer (20 mM 

Tris-HCl [pH 7.5], 100 mM NH4Cl, 0.3 mM MgCl2, 6mM BME). Crude ribosomes were 

then applied to the column, washed with 40 ml binding buffer and eluted with 20 ml 

elution buffer (50mM Tris-HCl [pH 7.5], 100mM NH4Cl, 0.3mM MgCl2, 10mM reduced 

glutathione, 6mM BME). Low Mg+2 concentration (0.3 mM) of the binding and elution 

buffers enable the 70S subunits to separate into constituent subunits111, allowing selective 
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retention of mutant 30S on the column. Eluted 30S subunits were dialyzed into buffer K 

(40mM Tris-HCl [pH 7.4], 40mM NH4Cl, 4mM MgOAc, 6mM BME) and  concentrated 

to at least 1nmol/ml  based on 1 A260 = 67 pmol in an Amicon Ultra centrifugal filter 

(Millipore, MWCO 100,000) and stored at –80 °C. Alternatively, to assess their structural 

integrity, eluted 30S subunits were dialyzed into a low magnesium buffer (50mM Tris–

HCl, [pH 7.5], 150mM NH4Cl, 0.3 mM MgCl2, and 6mM BME) and loaded on 10–30% 

sucrose density gradients prepared in the same buffer. The fractions containing 30S 

subunits were pooled, dialyzed against buffer K and stored at –80 °C to be used later for 

in vitro assays.  

In vitro activity assay of KsgA 

The in vitro assays were carried out according to O'Farrell et al.62. Reactions 

contained 40 mMTris (pH 7.4), 40 mM NH4Cl, 4 mM MgOAc, 6 mM BME, 0.02 mM 

3H-methyl-SAM (780 cpm/pmol; MP Biomedicals), 200 nM 30S subunits (10 pmol/50µl 

reaction), and 200 nM enzyme (10 pmol/50 µl reaction). Total reaction volume and 

components were adjusted based on the number of time points intended. To minimize any 

lag in the reaction start, buffer and reagents were prewarmed to 37 °C. At each 

designated time point, 50 µl was withdrawn and added to a prechilled tube containing 10 

µl of 100 mM unlabeled SAM (Sigma-Aldrich) to quench the reaction. The quenched 

reactions were deposited onto DE81 filter paper (Whatman), washed twice with ice-cold 

5% TCA, and rinsed briefly with ethanol. Filters were air-dried for 1 h, placed into 

scintillation fluid, and counted. Alternatively, at each designated time point, 50 µl was 
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removed and added to prechilled phenol/chloroform/isoamyl alcohol mixture to begin 

extraction of 16S rRNA for HPLC analysis (see below).  

HPLC analysis 

Labeled 16S rRNA was extracted from 30S subunits and separated on HPLC 

system as described in Chapter 3. Each sample was spiked with non-labeled N6-

methyladenosine and N6, N6-dimethyladenosine (Sigma-Aldrich) nucleoside standard for 

the ease of identification in UV chromatogram. Prior to separation, concentration of total 

nucleosides in each sample was determined by UV spectroscopy. For each sample, 80 µl 

was loaded onto the column. The values of area under the dimethyladenosine scintillation 

peak per nmol were normalized to those of wild type.  

Two dimensional gel electrophoresis analysis 

Total ribosomal proteins were extracted from ribosomes using the acetic acid 

method previously described by Siegmann & Thomas128. Briefly, 200 pmol purified 30S 

or 50S subunits stored in Buffer K (40 mMTris (pH 7.4), 40 mM NH4Cl, 4 mM MgOAc, 

6 mM BME) were ethanol precipitated in the presence of 300mM sodium acetate. The 

pellet was resuspended in 50µl dH2O and stirred together with 100µl Mg-acetate/acetic 

acid (1ml 1M magnesium acetate and 20 ml acetic acid) at 4°C. The mixture was 

centrifuged (15,000g, 30 min, 4 °C) to remove rRNAs. The supernatant containing the 

proteins was mixed with 5 volumes of acetone and allowed to precipitate overnight at 

−20 °C. Proteins were pelleted by centrifugation, resuspended in the sample buffer and 

subjected to two-dimensional gel electrophoretic analysis using the method developed by 

Geyl et al.129. The proteins were separated according to charge (pI) by isoelectric 
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focusing in the first dimension and according to size by SDS-PAGE in the second 

dimension followed by Coomassie staining of the gels for visualization. 
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CHAPTER 5: Future Work 
 
 
 

Ribosome biogenesis is a fundamental cellular process that has grown more and 

more divergent and intricate through evolution. The structural and functional 

conservation of KsgA/Dim1 enzymes through all domains of life underscores the 

importance of this family of methyltransferase and warrants the need to study them. The 

work presented here contributes significantly to the characterization of KsgA and lays a 

foundation for future work. Several questions remain to be answered to achieve the 

ultimate goal of fully defining the role of KsgA/Dim1 in ribosome biogenesis and 

applying that knowledge in the design of novel, more selective antimicrobial agents. The 

three foremost questions are: Where does KsgA bind on the 30S subunit? What is the true 

in vivo substrate for methylation by KsgA? What is the exact mechanism of methyl 

transfer? 

Our experiments have shown that G791 of helix 24 is important for KsgA 

catalysis. There were, however, no indications that KsgA interacts directly with helix 45 

or the tandem sheared base pairs of helix 44. It is extremely important to determine the 

binding site of KsgA on the 30S subunit in order to gain complete insight into the role of 

KsgA in ribosome biogenesis and how it interacts with other ribosome biogenesis factors 

or chaperons. The attempts of crystallizing 30S subunit in complex with KsgA have 

turned out to be unsuccessful. However, the Rife lab is currently employing the cryo 



www.manaraa.com

 

 100 

electron microscopy technique to pursue the structure of this complex which, if 

successful, will tell us where KsgA binds on 30S. If not, the interaction of KsgA with 

helix 44 alone can be characterized by X-ray crystallography or NMR (Xu et al. showed 

that helix 44 is the major 16S rRNA component in binding to KsgA91).  

We have shown that KsgA binds to naked 16S rRNA but does not methylate 21S 

particle in vitro, even though it has all the eight ribosomal proteins reported by 

Thammana and Held as absolutely essential for KsgA activity96. This implies that KsgA 

recognizes an assembly state that comes after 21S has been formed. To identify the 

minimal substrate, the activated counterpart 26S can be formed in vitro and tested for 

KsgA activity. If this particle does not prove to be a substrate, then testing of more 

complicated particles may be required. Such particles can be formed by batch, single 

omission or single addition of the 26S binding ribosomal proteins (S2, S3, S10, S14, S21) 

to 26S particles. Since these proteins have also been reported to be inhibitory to 

methylation by KsgA96, such experiments will also allow us to learn whether the original 

inhibition observed with this set of proteins was accurate or was due to some impurity. In 

vivo methods can also be applied to study the minimal substrate of KsgA. One such 

approach, which will allow direct monitoring of 16S rRNA methylation events, involves 

pulse labeling of methylated RNA using 3H-methionine. The level of methylation at 

A1518/A1519 can then be determined in specific populations of 16S rRNA-containing 

ribonucleoprotein particles (RNPs) using HPLC nucleoside analysis. Additionally, to 

determine whether or not the inactive conformation of 30S exists in vivo, the in vivo 

methylation of G926 and A1394 mutant 30S can be assessed by HPLC nucleoside 
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analysis. In vitro, these mutations have been shown to trap 30S subunits in the inactive or 

active state, respectively125.  

Another outstanding question is the exact mechanism of methyl transfer. There 

are no data concerning the number of binding events required to transfer four methyl 

groups or the order in which the methyl groups are transferred by KsgA. Kinetic studies 

of wild-type and mutant KsgA proteins can help probe KsgA’s mechanism. Techniques 

such as in vitro time course analysis, HPLC nucleoside analysis and primer extension can 

be used in combination to determine the order of methyl group transfer. Also, analyzing 

the type and extent of methylation in the 30S mutant, AddA (described in Chapter 4), 

may shed some light on whether or not KsgA specifically transfers four methyl groups to 

the two adenosines. 

Connolly et al. recently showed that the E66A mutant, a methyltransferase-

inactive form of KsgA, profoundly impairs ribosome biogenesis and is deleterious to cell 

growth69. Their findings highlight the importance of methylation in KsgA function and 

ribosome biogenesis, but contrasts dramatically with the results for catalytically inactive 

Dim1p, where no phenotype is observed76. We have shown that KsgA proteins from 

distinct evolutionary kingdoms can function in a bacterial system, demonstrating 

conservation of both, the protein and the key structures of 30S subunit. However, 

Pulicherla et al. recently showed that neither the bacterial nor the archaeal ortholog could 

complement for the eukaryotic Dim177. The above discussion clearly indicates that KsgA 

has the potential of being exploited as a selective antibacterial drug target. Future work is 
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required to identify those determinants which distinguish KsgA from its orthologs. 

Preliminary efforts for KsgA inhibitor design are already underway in the Rife lab. 
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APPENDIX 
 
 
 

Table 5. Sequence of primers used to create mutant 16S rRNA 
 

 Primers 

1 

For 

Rev 

G791A 

5’- GGAGCAAACAGGATTAAATACCCTGGTAGTCC - 3’ 

5’- GGACTACCAGGGTATTTAATCCTGTTTGCTCC - 3’ 

2 

For 

Rev 

G791C 

5’- GGAGCAAACAGGATTACATACCCTGGTAGTCC - 3’ 

5’ - GGACTACCAGGGTATGTAATCCTGTTTGCTCC - 3’ 

3 

For 

Rev 

G791U 

5’ - GGAGCAAACAGGATTATATACCCTGGTAGTCC - 3’ 

5’ - GGACTACCAGGGTATATAATCCTGTTTGCTCC - 3’ 

4 

For 

Rev 

Del790loop 

5’ - CGTGGGGAGCAAACAGAAATGGTAGTCCACGCCG - 3’ 

5’ - CGGCGTGGACTACCATTTCTGTTTGCTCCCCACG - 3’ 

5 

For 

Rev 

A1418C 

5’ - CCGTCACACCATGGGCGTGGGTTGCAAAAGAAG - 3’ 

5’ - CTTCTTTTGCAACCCACGCCCATGGTGTGACGG - 3’ 

6 

For 

Rev 

A1483C 

5’ - CCACTTTGTGATTCATGCCTGGGGTGAAGTCG - 3’ 

5’ - CGACTTCACCCCAGGCATGAATCACAAAGTGG - 3’ 
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7 

For 

 

Rev 

 

 
DelHel45 

5’ - GCTTACCACTTTGTGATTCATGATCACCTCCTTACCTTAAA 
GAAGC - 3’ 
 
5’ - GCTTCTTTAAGGTAAGGAGGTGATCATGAATCACAAAGTGG 
TAAGC - 3’ 

8 

For 

Rev 

Del2bp 

5’ - CGTAACAAGGTAAGTAGGGGAACCTGCTTGGATCACCTCC - 3’ 

5’ - GGAGGTGATCCAAGCAGGTTCCCCTACTTACCTTGTTACG - 3’ 

 
9 

For 

 

 

Rev 

 
Add2bp (used pSpurMS2 with DelHel45 mutation as template) 

5’ - GCTTACCACTTTGTGATTCATGACTGGGGTGAAGTCGTAACAA 
GGTAACCGCGTAGGGGAACCTGCGCGGTTGGATCACCTCCTTACC 
TTAAAGAAGC - 3’ 
 
5’ - GCTTCTTTAAGGTAAGGAGGTGATCCAACCGCGCAGGTTCCCC 
TACGCGGTTACCTTGTTACGACTTCACCCCAGTCATGAATCACAAA 
GTGGTAAGC - 3’ 
 

 
10 

For 

 

 

Rev 

 
AddA (used pSpurMS2 with DelHel45 mutation as template) 

5' -  GCTTACCACTTTGTGATTCATGACTGGGGTGAAGTCGTAACAA 
GGTAACCGTAGGGGAAACCTGCGGTTGGATCACCTCCTTACCTTAA 
AGAAGC - 3'   
 
5' -  GCTTCTTTAAGGTAAGGAGGTGATCCAACCGCAGGTTTCCCCT 
ACGGTTACCTTGTTACGACTTCACCCCAGTCATGAATCACAAAGTG 
GTAAGC - 3'   
 

11 

For 

Rev 

G926A 

5' - GAATTGACGAGGGCCCGCACAAGC - 3'   

5' - GCTTGTGCGGGCCCTCGTCAATTC - 3'   

12 

For 

Rev 

G926C 

5' - GAATTGACGCGGGCCCGCACAAGC - 3'   

5' - GCTTGTGCGGGCCCGCGTCAATTC - 3'   
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13 

For 

Rev 

G926U 

5' - GAATTGACGTGGGCCCGCACAAGC - 3'   

5' - GCTTGTGCGGGCCCACGTCAATTC - 3'   

14 

For 

Rev 

A1394C 

5' - CCGGGCCTTGTCCACACCGCCCG - 3'   

5' - CGGGCGGTGTGGACAAGGCCCGG - 3'   

15 

For 

Rev 

 
A1394G 

5' -  CCGGGCCTTGTGCACACCGCCCG  - 3'   

5' - CGGGCGGTGTGCACAAGGCCCGG  - 3'   

16 

For 

Rev 

A1394U 

5' - CCGGGCCTTGTTCACACCGCCCG - 3'   

5' - CGGGCGGTGTGAACAAGGCCCGG - 3'   

17 

For 

Rev 

G1523A 

5' - GGGGAACCTACGGTTGGATCACC - 3'   

5' - GGTGATCCAACCGTAGGTTCCCC - 3'   

18 

For 

Rev 

C1524U 

5' - GGGGAACCTGTGGTTGGATCACC - 3'   

5' - GGTGATCCAACCACAGGTTCCCC - 3'   
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